1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#!/usr/bin/env python
"""Wrapper for numpy arrays so that they can be indexed by name
>>> a = numpy.identity(3, int)
>>> b = DictArrayTemplate('abc', 'ABC').wrap(a)
>>> b[0]
===========
A B C
-----------
1 0 0
-----------
>>> b['a']
===========
A B C
-----------
1 0 0
-----------
>>> b.keys()
['a', 'b', 'c']
>>> b['a'].keys()
['A', 'B', 'C']
"""
import numpy
from cogent.format import table
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"
class DictArrayTemplate(object):
def __init__(self, *dimensions):
self.names = []
self.ordinals = []
for names in dimensions:
if isinstance(names, int):
names = range(names)
else:
names = list(names)[:]
self.names.append(names)
self.ordinals.append(dict((c,i) for (i,c) in enumerate(names)))
self._shape = tuple(len(keys) for keys in self.names)
def __eq__(self, other):
return self is other or (
isinstance(other, DictArrayTemplate) and self.names == other.names)
def unwrap(self, value):
"""Convert to a simple numpy array"""
if isinstance(value, DictArray):
if value.template == self:
return value.array
elif isinstance(value, dict):
# should handle dicts as well.
raise NotImplementedError
else:
value = numpy.asarray(value)
assert value.shape == self._shape, (value.shape, self._shape)
return value
def wrap(self, array, dtype = None):
# dtype is numpy
array = numpy.asarray(array, dtype=dtype)
for (dim, categories) in enumerate(self.names):
assert len(categories) == numpy.shape(array)[dim], "cats=%s; dim=%s" % (categories, dim)
return DictArray(array, self)
def interpretIndex(self, names):
if not isinstance(names, tuple):
names = (names,)
index = []
remaining = []
for (ordinals, allnames, name) in zip(self.ordinals, self.names, names):
if not isinstance(name, (int, slice)):
name = ordinals[name]
elif isinstance(name, slice):
start = name.start
stop = name.stop
if isinstance(name.start, str):
start = allnames.index(name.start)
if isinstance(name.stop, str):
stop = allnames.index(name.stop)
name = slice(start, stop, name.step)
remaining.append(allnames.__getitem__(name))
index.append(name)
remaining.extend(self.names[len(index):])
if remaining:
klass = type(self)(*remaining)
else:
klass = None
return (tuple(index), klass)
def array_repr(self, a):
if len(a.shape) == 1:
heading = [str(n) for n in self.names[0]]
a = a[numpy.newaxis, :]
elif len(a.shape) == 2:
heading = [''] + [str(n) for n in self.names[1]]
a = [[str(name)] + list(row) for (name, row) in zip(self.names[0], a)]
else:
return '%s dimensional %s' % (
len(self.names), type(self).__name__)
formatted = table.formattedCells(rows=a, header=heading)
return str(table.simpleFormat(formatted[0], formatted[1], space=4))
class DictArray(object):
"""Wraps a numpy array so that it can be indexed with strings like nested
dictionaries (only ordered), for things like substitution matrices and
bin probabilities."""
def __init__(self, *args, **kwargs):
"""allow alternate ways of creating for time being"""
if len(args) <= 2:
self.array = args[0]
self.template = args[1]
else:
if 'dtype' in kwargs or 'typecode' in kwargs:
dtype = kwargs['dtype']
kwargs.pop('dtype', None)
kwargs.pop('typecode', None)
else:
dtype = None
create_new = DictArrayTemplate(*args[1:]).wrap(args[0], dtype=dtype)
self.__dict__ = create_new.__dict__
self.Shape = self.array.shape
def asarray(self):
return self.array
def __array__(self):
return self.array
def asdict(self):
return dict(self.items())
def __getitem__(self, names):
(index, remaining) = self.template.interpretIndex(names)
result = self.array[index]
if remaining is not None:
result = self.__class__(result, remaining)
return result
def __iter__(self):
(index, remaining) = self.template.interpretIndex(0)
for elt in self.array:
if remaining is None:
yield elt
else:
yield remaining.wrap(elt)
def __len__(self):
return len(self.template.names[0])
def keys(self):
return self.template.names[0][:]
def items(self):
return [(n,self[n]) for n in self.keys()]
def __repr__(self):
return self.template.array_repr(self.array)
def __ne__(self, other):
return not self.__eq__(other)
def __eq__(self, other):
if self is other:
return True
elif isinstance(other, DictArray):
return self.template == other.template and numpy.all(
self.array == other.array)
elif type(other) is type(self.array):
return self.array == other
elif isinstance(other, dict):
return self.asdict() == other
else:
return False
|