1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
Collections and Alignments
--------------------------
.. authors, Gavin Huttley, Kristian Rother, Patrick Yannul, Tom Elliott
Loading sequences from a file
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
As an alignment
"""""""""""""""
The function ``LoadSeqs()`` creates either a sequence collection or an alignment depending on the keyword argument ``aligned`` (the default is ``True``).
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/long_testseqs.fasta', moltype=DNA)
>>> type(aln)
<class 'cogent.core.alignment.Alignment'>
This example and those following used the file named `long_testseqs.fasta` available in the `data` directory. You can find it here :download:`long_testseqs.fasta <../data/long_testseqs.fasta>`.
As a sequence collection (unaligned)
""""""""""""""""""""""""""""""""""""
Setting the ``LoadSeqs()`` function keyword argument ``aligned=False`` returns a sequence collection.
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> seqs = LoadSeqs('data/long_testseqs.fasta', moltype=DNA, aligned=False)
>>> print type(seqs)
<class 'cogent.core.alignment.SequenceCollection'>
.. note:: An alignment can be sliced, but a ``SequenceCollection`` can not.
Specifying the file format
""""""""""""""""""""""""""
``LoadSeqs`` uses the filename suffix to infer the file format. This can be overridden using the format argument.
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/long_testseqs.fasta', moltype=DNA,
... format='fasta')
...
>>> aln
5 x 2532 dna alignment: Human[TGTGGCACAAA...
Basic Collection objects
^^^^^^^^^^^^^^^^^^^^^^^^
.. _load-seqs:
Constructing a SequenceCollection or Alignment object from strings
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> dna = {'seq1': 'ATGACC',
... 'seq2': 'ATCGCC'}
>>> seqs = LoadSeqs(data=dna, moltype=DNA)
>>> print type(seqs)
<class 'cogent.core.alignment.Alignment'>
>>> seqs = LoadSeqs(data=dna, moltype=DNA, aligned=False)
>>> print type(seqs)
<class 'cogent.core.alignment.SequenceCollection'>
To recover a single DNA sequence from the collection or alignment by name
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/long_testseqs.fasta', moltype=DNA, aligned=True)
>>> aln.Names
['Human', 'HowlerMon', 'Mouse', 'NineBande', 'DogFaced']
>>> seq = aln.getSeq('Human')
>>> seq.Name
'Human'
>>> seq
DnaSequence(TGTGGCA... 2532)
>>> type(seq)
<class 'cogent.core.sequence.DnaSequence'>
One can also slice the sequences from an alignment like a list
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> aln.Seqs[0]
[0:2532]/2532 of DnaSequence(TGTGGCA... 2532)
An alignment can be sliced "vertically"
"""""""""""""""""""""""""""""""""""""""
Alignments are organised with sequences as 'rows' and aligned residues in 'columns'. Hence, vertical slicing returns columns.
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/long_testseqs.fasta', moltype=DNA, aligned=True)
>>> print aln[:24]
>Human
TGTGGCACAAATACTCATGCCAGC
>HowlerMon
TGTGGCACAAATACTCATGCCAGC
>Mouse
TGTGGCACAGATGCTCATGCCAGC
>NineBande
TGTGGCACAAATACTCATGCCAAC
>DogFaced
TGTGGCACAAATACTCATGCCAAC
<BLANKLINE>
A SequenceCollection cannot be sliced (it's unaligned)
""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> seqs = LoadSeqs('data/long_testseqs.fasta', moltype=DNA, aligned=False)
>>> try:
... print seqs[:24]
... except TypeError as e:
... print e
...
'SequenceCollection' object is unsubscriptable
Converting a SequenceCollection to FASTA format
"""""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent import LoadSeqs
>>> seq = LoadSeqs('data/test.paml', aligned=False)
>>> fasta_data = seq.toFasta()
>>> print fasta_data
>DogFaced
GCAAGGAGCCAGCAGAACAGATGGGTTGAAACTAAGGAAACATGTAATGATAGGCAGACT
>HowlerMon
GCAAGGAGCCAACATAACAGATGGGCTGAAAGTGAGGAAACATGTAATGATAGGCAGACT
>Human
GCAAGGAGCCAACATAACAGATGGGCTGGAAGTAAGGAAACATGTAATGATAGGCGGACT
>Mouse
GCAGTGAGCCAGCAGAGCAGATGGGCTGCAAGTAAAGGAACATGTAACGACAGGCAGGTT
>NineBande
GCAAGGCGCCAACAGAGCAGATGGGCTGAAAGTAAGGAAACATGTAATGATAGGCAGACT
The elements of a collection or alignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Accessing individual sequences by name
""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/long_testseqs.fasta', moltype=DNA, aligned=True)
>>> aln.Names
['Human', 'HowlerMon', 'Mouse', 'NineBande', 'DogFaced']
>>> seq = aln.getSeq('Human')
>>> seq.Name
'Human'
>>> seq
DnaSequence(TGTGGCA... 2532)
>>> type(seq)
<class 'cogent.core.sequence.DnaSequence'>
Accessing individual sequences by position
""""""""""""""""""""""""""""""""""""""""""
The usual approach is to access a ``SequenceCollection`` or ``Alignment`` object as a dictionary, obtaining the individual sequences using the titles as "keys" (above). However, one can also iterate through the collection like a list.
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> fn = 'data/long_testseqs.fasta'
>>> seqs = LoadSeqs(fn, moltype=DNA, aligned=False)
>>> my_seq = seqs.Seqs[0]
>>> my_seq[:24]
DnaSequence(TGTGGCA... 24)
>>> str(my_seq[:24])
'TGTGGCACAAATACTCATGCCAGC'
>>> type(my_seq)
<class 'cogent.core.sequence.DnaSequence'>
>>> aln = LoadSeqs(fn, moltype=DNA, aligned=True)
>>> aln.Seqs[0][:24]
[0:24]/2532 of DnaSequence(TGTGGCA... 2532)
>>> print aln.Seqs[0][:24]
TGTGGCACAAATACTCATGCCAGC
Keeping a subset of sequences from the alignment
""""""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/test.paml', moltype=DNA)
>>> aln.Names
['NineBande', 'Mouse', 'Human', 'HowlerMon', 'DogFaced']
>>> new = aln.takeSeqs(['Human', 'HowlerMon'])
>>> new.Names
['Human', 'HowlerMon']
Note the subset contain references to the original sequences, not copies.
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/test.paml', moltype=DNA)
>>> seq = aln.getSeq('Human')
>>> new = aln.takeSeqs(['Human', 'HowlerMon'])
>>> id(new.getSeq('Human')) == id(aln.getSeq('Human'))
True
Alignments
^^^^^^^^^^
Creating an Alignment object from a SequenceCollection
""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent.core.alignment import Alignment
>>> seq = LoadSeqs('data/test.paml', aligned=False)
>>> aln = Alignment(seq)
>>> fasta_1 = seq.toFasta()
>>> fasta_2 = aln.toFasta()
>>> assert fasta_1 == fasta_2
Handling gaps
"""""""""""""
Remove all gaps from an alignment in FASTA format
+++++++++++++++++++++++++++++++++++++++++++++++++
This necessarily returns a ``SequenceCollection``.
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs("data/primate_cdx2_promoter.fasta")
>>> degapped = aln.degap()
>>> print type(degapped)
<class 'cogent.core.alignment.SequenceCollection'>
.. TODO the following should be preceded by a section describing the writeToFile method and format argument
Writing sequences to file
"""""""""""""""""""""""""
Both collection and alignment objects have a ``writeToFile`` method. The output format is inferred from the filename suffix,
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> dna = {'seq1': 'ATGACC',
... 'seq2': 'ATCGCC'}
>>> aln = LoadSeqs(data=dna, moltype=DNA)
>>> aln.writeToFile('sample.fasta')
or by the ``format`` argument.
.. doctest::
>>> aln.writeToFile('sample', format='fasta')
.. now clean the files up
.. doctest::
:hide:
>>> from cogent.util.misc import remove_files
>>> remove_files(['sample', 'sample.fasta'], error_on_missing=False)
Converting an alignment to FASTA format
"""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent.core.alignment import Alignment
>>> seq = LoadSeqs('data/long_testseqs.fasta')
>>> aln = Alignment(seq)
>>> fasta_align = aln.toFasta()
Converting an alignment into Phylip format
""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent.core.alignment import Alignment
>>> seq = LoadSeqs('data/test.paml')
>>> aln = Alignment(seq)
>>> phylip_file, name_dictionary = aln.toPhylip()
Converting an alignment to a list of strings
""""""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent.core.alignment import Alignment
>>> seq = LoadSeqs('data/test.paml')
>>> aln = Alignment(seq)
>>> string_list = aln.todict().values()
Slicing an alignment
^^^^^^^^^^^^^^^^^^^^
By rows (sequences)
"""""""""""""""""""
An ``Alignment`` can be sliced
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> fn = 'data/long_testseqs.fasta'
>>> aln = LoadSeqs(fn, moltype=DNA, aligned=True)
>>> print aln[:24]
>Human
TGTGGCACAAATACTCATGCCAGC
>HowlerMon
TGTGGCACAAATACTCATGCCAGC
>Mouse
TGTGGCACAGATGCTCATGCCAGC
>NineBande
TGTGGCACAAATACTCATGCCAAC
>DogFaced
TGTGGCACAAATACTCATGCCAAC
<BLANKLINE>
but a ``SequenceCollection`` cannot be sliced
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> fn = 'data/long_testseqs.fasta'
>>> seqs = LoadSeqs(fn, moltype=DNA, aligned=False)
>>> try:
... print seqs[:24]
... except TypeError as e:
... print e
...
'SequenceCollection' object is unsubscriptable
Getting a single column from an Alignment
"""""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent.core.alignment import Alignment
>>> seq = LoadSeqs('data/test.paml')
>>> aln = Alignment(seq)
>>> column_four = aln[3]
Getting a region of contiguous columns
""""""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent.core.alignment import Alignment
>>> aln = LoadSeqs('data/long_testseqs.fasta')
>>> region = aln[50:70]
Iterating over alignment positions
""""""""""""""""""""""""""""""""""
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs('data/primate_cdx2_promoter.fasta')
>>> col = aln[113:115].iterPositions()
>>> type(col)
<type 'generator'>
>>> list(col)
[['A', 'A', 'A'], ['T', '-', '-']]
Getting codon 3rd positions from an alignment
"""""""""""""""""""""""""""""""""""""""""""""
We'll do this by specifying the position indices of interest, creating a sequence ``Feature`` and using that to extract the positions.
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs(data={'seq1': 'ATGATGATG---',
... 'seq2': 'ATGATGATGATG'})
>>> range(len(aln))[2::3]
[2, 5, 8, 11]
>>> indices = [(i, i+1) for i in range(len(aln))[2::3]]
>>> indices
[(2, 3), (5, 6), (8, 9), (11, 12)]
>>> pos3 = aln.addFeature('pos3', 'pos3', indices)
>>> pos3 = pos3.getSlice()
>>> print pos3
>seq2
GGGG
>seq1
GGG-
<BLANKLINE>
Filtering positions
"""""""""""""""""""
Eliminating columns with non-nucleotide characters
++++++++++++++++++++++++++++++++++++++++++++++++++
We sometimes want to eliminate ambiguous or gap data from our alignments. We show how to exclude alignment columns by the characters they contain. In the first instance we do this just for single nucleotide columns, then for trinucleotides (equivalent for handling codons).
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs(data= [('seq1', 'ATGAAGGTG---'),
... ('seq2', 'ATGAAGGTGATG'),
... ('seq3', 'ATGAAGGNGATG')], moltype=DNA)
We now just define a one-line function that returns ``True`` if the passed data contains only nucleotide characters, ``False`` otherwise. The function works by converting the aligned column into a ``set`` and checking it is equal to, or a subset of, all nucleotides. This function, which works for nucleotides or codons, has the effect of eliminating the (nucleotide/trinucleotide) columns with the 'N' and '-' characters.
.. doctest::
>>> just_nucs = lambda x: set(''.join(x)) <= set('ACGT')
We apply to nucleotides,
.. doctest::
>>> nucs = aln.filtered(just_nucs)
>>> print nucs
>seq1
ATGAAGGG
>seq2
ATGAAGGG
>seq3
ATGAAGGG
<BLANKLINE>
We can also do this in a more longwinded but clearer fashion with a named multi-line function:
.. doctest::
>>> def just_nucs(x, allowed = 'ACGT'):
... for char in ''.join(x): # ensure char is a str with length 1
... if not char in allowed:
... return False
... return True
...
>>> nucs = aln.filtered(just_nucs)
>>> nucs
3 x 8 dna alignment: seq1[ATGAAGGG], seq2[ATGAAGGG], seq3[ATGAAGGG]
>>> print nucs
>seq1
ATGAAGGG
>seq2
ATGAAGGG
>seq3
ATGAAGGG
<BLANKLINE>
Applying the same filter to trinucleotides (specified by setting ``motif_length=3``).
.. doctest::
>>> trinucs = aln.filtered(just_nucs, motif_length=3)
>>> print trinucs
>seq1
ATGAAG
>seq2
ATGAAG
>seq3
ATGAAG
<BLANKLINE>
Getting all variable positions from an alignment
++++++++++++++++++++++++++++++++++++++++++++++++
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs('data/long_testseqs.fasta')
>>> just_variable_aln = aln.filtered(lambda x: len(set(x)) > 1)
>>> print just_variable_aln[:10]
>Human
AAGCAAAACT
>HowlerMon
AAGCAAGACT
>Mouse
GGGCCCAGCT
>NineBande
AAATAAAACT
>DogFaced
AAACAAAATA
<BLANKLINE>
Getting all constant positions from an alignment
++++++++++++++++++++++++++++++++++++++++++++++++
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs('data/long_testseqs.fasta')
>>> just_constant_aln = aln.filtered(lambda x: len(set(x)) == 1)
>>> print just_constant_aln[:10]
>Human
TGTGGCACAA
>HowlerMon
TGTGGCACAA
>Mouse
TGTGGCACAA
>NineBande
TGTGGCACAA
>DogFaced
TGTGGCACAA
<BLANKLINE>
Getting all variable codons from an alignment
+++++++++++++++++++++++++++++++++++++++++++++
This is exactly the same as before, with a new keyword argument
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs('data/long_testseqs.fasta')
>>> variable_codons = aln.filtered(lambda x: len(set(x)) > 1,
... motif_length=3)
>>> print just_variable_aln[:9]
>Human
AAGCAAAAC
>HowlerMon
AAGCAAGAC
>Mouse
GGGCCCAGC
>NineBande
AAATAAAAC
>DogFaced
AAACAAAAT
<BLANKLINE>
Filtering sequences
"""""""""""""""""""
*To be written.*
Computing alignment statistics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Computing motif probabilities from an alignment
"""""""""""""""""""""""""""""""""""""""""""""""
The method ``getMotifProbs()`` of ``Alignment`` objects returns the probabilities for all motifs of a given length. For individual nucleotides:
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/primate_cdx2_promoter.fasta', moltype=DNA)
>>> motif_probs = aln.getMotifProbs()
>>> print motif_probs
{'A': 0.24...
For dinucleotides or longer, we need to pass in an ``Alphabet`` with the appropriate word length. Here is an example with trinucleotides:
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> trinuc_alphabet = DNA.Alphabet.getWordAlphabet(3)
>>> aln = LoadSeqs('data/primate_cdx2_promoter.fasta', moltype=DNA)
>>> motif_probs = aln.getMotifProbs(alphabet=trinuc_alphabet)
>>> for m in sorted(motif_probs, key=lambda x: motif_probs[x],
... reverse=True):
... print m, motif_probs[m]
...
CAG 0.0374581939799
CCT 0.0341137123746
CGC 0.0301003344482...
The same holds for other arbitrary alphabets, as long as they match the alignment ``MolType``.
Some calculations in cogent require all non-zero values in the motif probabilities, in which case we use a pseudo-count. We illustrate that here with a simple example where T is missing. Without the pseudo-count, the frequency of T is 0.0, with the pseudo-count defined as 1e-6 then the frequency of T will be slightly less than 1e-6.
.. doctest::
>>> aln = LoadSeqs(data=[('a', 'AACAAC'),('b', 'AAGAAG')], moltype=DNA)
>>> motif_probs = aln.getMotifProbs()
>>> assert motif_probs['T'] == 0.0
>>> motif_probs = aln.getMotifProbs(pseudocount=1e-6)
>>> assert 0 < motif_probs['T'] <= 1e-6
It is important to notice that motif probabilities are computed by treating sequences as non-overlapping tuples. Below is a very simple pair of identical sequences where there are clearly 2 'AA' dinucleotides per sequence but only the first one is 'in-frame' (frame width = 2).
We then create a dinucleotide ``Alphabet`` object and use this to get dinucleotide probabilities. These frequencies are determined by breaking each aligned sequence up into non-overlapping dinucleotides and then doing a count. The expected value for the 'AA' dinucleotide in this case will be 2/8 = 0.25.
.. doctest::
>>> seqs = [('a', 'AACGTAAG'), ('b', 'AACGTAAG')]
>>> aln = LoadSeqs(data=seqs, moltype=DNA)
>>> dinuc_alphabet = DNA.Alphabet.getWordAlphabet(2)
>>> motif_probs = aln.getMotifProbs(alphabet=dinuc_alphabet)
>>> assert motif_probs['AA'] == 0.25
What about counting the total incidence of dinucleotides including those not in-frame? A naive application of the Python string object's count method will not work as desired either because it "returns the number of non-overlapping occurrences".
.. doctest::
>>> seqs = [('my_seq', 'AAAGTAAG')]
>>> aln = LoadSeqs(data=seqs, moltype=DNA)
>>> my_seq = aln.getSeq('my_seq')
>>> my_seq.count('AA')
2
>>> 'AAA'.count('AA')
1
>>> 'AAAA'.count('AA')
2
To count all occurrences of a given dinucleotide in a DNA sequence, one could use a standard Python approach such as list comprehension:
.. doctest::
>>> from cogent import Sequence, DNA
>>> seq = Sequence(moltype=DNA, seq='AAAGTAAG')
>>> seq
DnaSequence(AAAGTAAG)
>>> di_nucs = [seq[i:i+2] for i in range(len(seq)-1)]
>>> sum([nn == 'AA' for nn in di_nucs])
3
Calculating gap fractions for each column in an alignment
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Filtering extracted columns for the gap character
+++++++++++++++++++++++++++++++++++++++++++++++++
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs('data/primate_cdx2_promoter.fasta')
>>> col = aln[113:115].iterPositions()
>>> c1, c2 = list(col)
>>> c1, c2
(['A', 'A', 'A'], ['T', '-', '-'])
>>> filter(lambda x: x == '-', c1)
[]
>>> filter(lambda x: x == '-', c2)
['-', '-']
Calculating the gap fraction
++++++++++++++++++++++++++++
.. doctest::
>>> from cogent import LoadSeqs
>>> aln = LoadSeqs('data/primate_cdx2_promoter.fasta')
>>> for column in aln[113:150].iterPositions():
... ungapped = filter(lambda x: x == '-', column)
... gap_fraction = len(ungapped) * 1.0 / len(column)
... print gap_fraction
0.0
0.666666666667
0.0
0.0...
|