File: hmm_par_heterogeneity.rst

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (283 lines) | stat: -rw-r--r-- 11,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
Evaluate process heterogeneity using a Hidden Markov Model
==========================================================

.. sectionauthor:: Gavin Huttley

The existence of rate heterogeneity in the evolution of biological sequences is well known. Typically such an evolutionary property is evaluated using so-called site-heterogeneity models. These models postulate the existence of discrete classes of sites, where sites within a class evolve according to a specific rate that is distinct from the rates of the other classes. These models retain the assumption that alignment columns evolve independently. One can naturally ask the question of whether rate classes occur randomly throughout the sequence or whether they are in fact auto-correlated - meaning sites of a class tend to cluster together. Because we do not have, *a priori*, a basis for classifying the sites the models are specified such that each column can belong to any of the designated site classes and the likelihood is computed across all possible classifications. Post numerical optimisation we can calculate the posterior probability a site column belongs to a specific site class. In ``cogent``, site classes are referred to as ``bins`` and so we refer to bin probabilities etc ...

To illustrate how to evaluate these hypotheses formally we specify 3 nested hypotheses: (i) Ho: no rate heterogeneity; (ii) Ha(1): two classes of sites - fast and slow, but independent sites; (iii) Ha(2): fast and slowly evolving sites are auto-correlated (meaning a sites class is correlated with that of its' immediate neighbours).

It is also possible to apply these models to different types of changes and we illustrate this with a single parameterisation at the end.

First import standard components necessary for all of the following calculations. As the likelihood ratio tests (LRT) involve nested hypotheses we will employ the chi-square approximation for assessing statistical significance.

.. doctest::

    >>> from cogent.evolve.substitution_model import Nucleotide, predicate
    >>> from cogent import LoadSeqs, LoadTree
    >>> from cogent.maths.stats import chisqprob

Load the alignment and tree.

.. doctest::

    >>> aln = LoadSeqs("data/long_testseqs.fasta")
    >>> tree = LoadTree("data/test.tree")

Model Ho: no rate heterogeneity
-------------------------------

We define a HKY model of nucleotide substitution, which has a transition parameter. This is defined using the ``MotifChange`` class, by specifying a transition as **not** a transversion (``~MotifChange('R','Y')``).

.. doctest::

    >>> MotifChange = predicate.MotifChange
    >>> treat_gap = dict(recode_gaps=True, model_gaps=False)
    >>> kappa = (~MotifChange('R', 'Y')).aliased('kappa')
    >>> model = Nucleotide(predicates=[kappa], **treat_gap)

We specify a null model with no bins, and optimise it.

.. doctest::

    >>> lf_one = model.makeLikelihoodFunction(tree, digits=2, space=3)
    >>> lf_one.setAlignment(aln)
    >>> lf_one.optimise(show_progress=False)
    >>> lnL_one = lf_one.getLogLikelihood()
    >>> df_one = lf_one.getNumFreeParams()
    >>> print lf_one
    Likelihood Function Table
    =====
    kappa
    -----
     4.10
    -----
    ===========================
         edge   parent   length
    ---------------------------
        Human   edge.0     0.03
    HowlerMon   edge.0     0.04
       edge.0   edge.1     0.04
        Mouse   edge.1     0.28
       edge.1     root     0.02
    NineBande     root     0.09
     DogFaced     root     0.11
    ---------------------------
    ==============
    motif   mprobs
    --------------
        T     0.23
        C     0.19
        A     0.37
        G     0.21
    --------------

Model Ha(1): two classes of gamma distributed but independent sites
-------------------------------------------------------------------

Our next hypothesis is that there are two rate classes, or bins, with rates gamma distributed. We will restrict the bin probabilities to be equal.

.. doctest::

    >>> bin_submod = Nucleotide(predicates=[kappa], ordered_param='rate',
    ...                      distribution='gamma', **treat_gap)
    >>> lf_bins = bin_submod.makeLikelihoodFunction(tree, bins=2,
    ...                             sites_independent=True, digits=2, space=3)
    >>> lf_bins.setParamRule('bprobs', is_const=True)
    >>> lf_bins.setAlignment(aln)
    >>> lf_bins.optimise(local=True, show_progress=False)
    >>> lnL_bins = lf_bins.getLogLikelihood()
    >>> df_bins = lf_bins.getNumFreeParams()
    >>> assert df_bins == 9
    >>> print lf_bins
    Likelihood Function Table
    ==================
    kappa   rate_shape
    ------------------
     4.38         1.26
    ------------------
    ===========================
         edge   parent   length
    ---------------------------
        Human   edge.0     0.03
    HowlerMon   edge.0     0.04
       edge.0   edge.1     0.04
        Mouse   edge.1     0.31
       edge.1     root     0.02
    NineBande     root     0.10
     DogFaced     root     0.12
    ---------------------------
    ====================
     bin   bprobs   rate
    --------------------
    bin0     0.50   0.41
    bin1     0.50   1.59
    --------------------
    ==============
    motif   mprobs
    --------------
        T     0.23
        C     0.19
        A     0.37
        G     0.21
    --------------

Model Ha(2): fast and slowly evolving sites are auto-correlated
---------------------------------------------------------------

We then specify a model with switches for changing between site-classes, the HMM part. The setup is almost identical to that for above with the sole difference being setting the ``sites_independent=False``.

.. doctest::

    >>> lf_patches = bin_submod.makeLikelihoodFunction(tree, bins=2,
    ...                         sites_independent=False, digits=2, space=3)
    >>> lf_patches.setParamRule('bprobs', is_const=True)
    >>> lf_patches.setAlignment(aln)
    >>> lf_patches.optimise(local=True, show_progress=False)
    >>> lnL_patches = lf_patches.getLogLikelihood()
    >>> df_patches = lf_patches.getNumFreeParams()
    >>> print lf_patches
    Likelihood Function Table
    ===============================
    bin_switch   kappa   rate_shape
    -------------------------------
          0.56    4.42         1.16
    -------------------------------
    ===========================
         edge   parent   length
    ---------------------------
        Human   edge.0     0.03
    HowlerMon   edge.0     0.04
       edge.0   edge.1     0.04
        Mouse   edge.1     0.31
       edge.1     root     0.02
    NineBande     root     0.10
     DogFaced     root     0.12
    ---------------------------
    ====================
     bin   bprobs   rate
    --------------------
    bin0     0.50   0.39
    bin1     0.50   1.61
    --------------------
    ==============
    motif   mprobs
    --------------
        T     0.23
        C     0.19
        A     0.37
        G     0.21
    --------------

We use the following short function to compute the LR test statistic.

.. doctest::

    >>> LR = lambda alt, null: 2 * (alt - null)

We conduct the test between the sequentially nested models.

.. doctest::

    >>> lr = LR(lnL_bins, lnL_one)
    >>> print lr
    22...
    >>> print "%.4f" % chisqprob(lr, df_patches-df_bins)
    0.0000

The stationary bin probabilities are labelled as ``bprobs`` and can be obtained as follows.

.. doctest::

    >>> bprobs = lf_patches.getParamValue('bprobs')
    >>> print "%.1f : %.1f" % tuple(bprobs)
    0.5 : 0.5

Of greater interest here (given the model was set up so the bin probabilities were equal, i.e. ``is_const=True``) are the posterior probabilities as those allow classification of sites. The result is a ``DictArray`` class instance, which behaves like a dictionary.

.. doctest::

    >>> pp = lf_patches.getBinProbs()

If we want to know the posterior probability the 21st position belongs to ``bin0``, we can determine it as:

.. doctest::

    >>> print pp['bin0'][20]
    0.8...

A model with patches of ``kappa``
---------------------------------

In this example we model sequence evolution where there are 2 classes of sites distinguished by their ``kappa`` parameters. We need to know what value of ``kappa`` to specify the delineation of the bin boundaries. We can determine this from the null model (``lf_one``). For this use case, we also need to use a ``numpy.array``, so we'll import that.

.. todo::
    
    **FOR RELEASE** did we fix this silliness of requiring a nump.array?

.. doctest::
    
    >>> from numpy import array
    >>> single_kappa = lf_one.getParamValue('kappa')

We then construct the substitution model in a different way to that when evaluating generic rate heterogeneity (above).

.. doctest::
    
    >>> kappa_bin_submod = Nucleotide(predicates=[kappa], **treat_gap)
    >>> lf_kappa = kappa_bin_submod.makeLikelihoodFunction(tree,
    ...      bins = ['slow', 'fast'], sites_independent=False, digits=1,
    ...      space=3)

To improve the likelihood fitting it is desirable to set starting values in the model that result in it's initial likelihood being that of the null model (or as close as possible). To do this, we're going to define an arbitrarily small value (``epsilon``) which we use to provide the starting value to the two bins as slightly smaller/greater than ``single_kappa`` for the slow/fast bins respectively. At the same time we set the upper/lower bin boundaries.

.. doctest::
    
    >>> epsilon = 1e-6
    >>> lf_kappa.setParamRule(kappa, init=single_kappa-epsilon,
    ...                      upper=single_kappa, bin='slow')
    >>> lf_kappa.setParamRule(kappa, init=single_kappa+epsilon,
    ...                      lower=single_kappa, bin='fast')

We then illustrate how to adjust the bin probabilities, here doing it so that one of them is nearly 1, the other nearly 0. This ensures the likelihood will be near identical to that of ``lf_one`` and as a result the optimisation step will actually improve fit over the simpler model.

.. doctest::
    
    >>> lf_kappa.setParamRule('bprobs',
    ...             init=array([1.0-epsilon, 0.0+epsilon]))
    >>> lf_kappa.setAlignment(aln)
    >>> lf_kappa.optimise(local=True, show_progress = False)
    >>> print lf_kappa
    Likelihood Function Table
    ==========
    bin_switch
    ----------
           0.6
    ----------
    =====================
     bin   bprobs   kappa
    ---------------------
    slow      0.8     3.0
    fast      0.2    23.3
    ---------------------
    ===========================
         edge   parent   length
    ---------------------------
        Human   edge.0      0.0
    HowlerMon   edge.0      0.0
       edge.0   edge.1      0.0
        Mouse   edge.1      0.3
       edge.1     root      0.0
    NineBande     root      0.1
     DogFaced     root      0.1
    ---------------------------
    ==============
    motif   mprobs
    --------------
        T      0.2
        C      0.2
        A      0.4
        G      0.2
    --------------
    >>> print lf_kappa.getLogLikelihood()
    -8749.3...