File: relative_rate.rst

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (151 lines) | stat: -rw-r--r-- 3,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Performing a relative rate test
===============================

.. sectionauthor:: Gavin Huttley

From cogent import all the components we need

.. doctest::

    >>> from cogent import LoadSeqs, LoadTree
    >>> from cogent.evolve.models import HKY85
    >>> from cogent.maths import stats

Get your alignment and tree.

.. doctest::

    >>> aln = LoadSeqs(filename = "data/long_testseqs.fasta")
    >>> t = LoadTree(filename = "data/test.tree")

Create a HKY85 model.

.. doctest::

    >>> sm = HKY85()

Make the controller object and limit the display precision (to decrease the chance that small differences in estimates cause tests of the documentation to fail).

.. doctest::

    >>> lf = sm.makeLikelihoodFunction(t, digits=2, space=3)

Set the local clock for humans & Howler Monkey. This method is just a special interface to the more general ``setParamRules`` method.

.. doctest::

    >>> lf.setLocalClock("Human", "HowlerMon")

Get the likelihood function object this object performs the actual likelihood calculation.

.. doctest::

    >>> lf.setAlignment(aln)

Optimise the function capturing the return optimised lnL, and parameter value vector.

.. doctest::

    >>> lf.optimise(show_progress = False)

View the resulting maximum-likelihood parameter values.

.. doctest::

    >>> lf.setName("clock")
    >>> print lf
    clock
    =====
    kappa
    -----
     4.10
    -----
    ===========================
         edge   parent   length
    ---------------------------
        Human   edge.0     0.04
    HowlerMon   edge.0     0.04
       edge.0   edge.1     0.04
        Mouse   edge.1     0.28
       edge.1     root     0.02
    NineBande     root     0.09
     DogFaced     root     0.11
    ---------------------------
    ==============
    motif   mprobs
    --------------
        T     0.23
        C     0.19
        A     0.37
        G     0.21
    --------------

We extract the log-likelihood and number of free parameters for later use.

.. doctest::

    >>> null_lnL = lf.getLogLikelihood()
    >>> null_nfp = lf.getNumFreeParams()

Clear the local clock constraint, freeing up the branch lengths.

.. doctest::

    >>> lf.setParamRule('length', is_independent=True)

Run the optimiser capturing the return optimised lnL, and parameter value vector.

.. doctest::

    >>> lf.optimise(show_progress=False)

View the resulting maximum-likelihood parameter values.

.. doctest::

    >>> lf.setName("non clock")
    >>> print lf
    non clock
    =====
    kappa
    -----
     4.10
    -----
    ===========================
         edge   parent   length
    ---------------------------
        Human   edge.0     0.03
    HowlerMon   edge.0     0.04
       edge.0   edge.1     0.04
        Mouse   edge.1     0.28
       edge.1     root     0.02
    NineBande     root     0.09
     DogFaced     root     0.11
    ---------------------------
    ==============
    motif   mprobs
    --------------
        T     0.23
        C     0.19
        A     0.37
        G     0.21
    --------------

These two lnL's are now used to calculate the likelihood ratio statistic it's degrees-of-freedom and the probability of observing the LR.

.. doctest::

    >>> LR = 2 * (lf.getLogLikelihood() - null_lnL)
    >>> df = lf.getNumFreeParams() - null_nfp
    >>> P = stats.chisqprob(LR, df)

Print this and look up a :math:`$\chi^2$` with number of edges - 1 degrees of freedom.

.. doctest::

    >>> print "Likelihood ratio statistic = ", LR
    Likelihood ratio statistic =  2.7...
    >>> print "degrees-of-freedom = ", df
    degrees-of-freedom =  1
    >>> print "probability = ", P
    probability =  0.09...