1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
#!/usr/bin/env python
from cogent.util.unit_test import TestCase, main
from numpy import array, float64 as Float64, zeros
from math import sqrt
from random import choice
from cogent.core.alignment import Alignment
from cogent.core.sequence import DnaSequence, RnaSequence
from cogent.core.moltype import DNA, RNA
from cogent.align.weights.util import Weights, number_of_pseudo_seqs,\
pseudo_seqs_exact, pseudo_seqs_monte_carlo, row_to_vote, distance_matrix,\
eigenvector_for_largest_eigenvalue, DNA_ORDER,RNA_ORDER,PROTEIN_ORDER,\
SeqToProfile,AlnToProfile, distance_to_closest
__author__ = "Sandra Smit"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Sandra Smit", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Sandra Smit"
__email__ = "sandra.smit@colorado.edu"
__status__ = "Development"
class WeightsTests(TestCase):
def test_weights(self):
"""Weights: should behave like a normal dict and can be normalized
"""
w = Weights({'seq1':2, 'seq2':3, 'seq3':10})
self.assertEqual(w['seq1'],2)
w.normalize()
exp = {'seq1':0.1333333, 'seq2':0.2, 'seq3':0.6666666}
self.assertFloatEqual(w.values(), exp.values())
class UtilTests(TestCase):
def setUp(self):
"""Set up for Voronoi tests"""
self.aln1 = Alignment(['ABC','BCC','BAC'])
self.aln2 = Alignment({'seq1':'GYVGS','seq2':'GFDGF','seq3':'GYDGF',\
'seq4':'GYQGG'},Names=['seq1','seq2','seq3','seq4'])
self.aln3 = Alignment({'seq1':'AA', 'seq2':'AA', 'seq3':'BB'},\
Names=['seq1','seq2','seq3'])
self.aln4 = Alignment({'seq1':'AA', 'seq2':'AA', 'seq3':'BB',\
'seq4':'BB','seq5':'CC'},Names=['seq1','seq2','seq3','seq4','seq5'])
self.aln5 = Alignment(['ABBA','ABCA','CBCB'])
def test_number_of_pseudo_seqs(self):
"""number_of_pseudo_seqs: should return # of pseudo seqs"""
self.assertEqual(number_of_pseudo_seqs(self.aln1),6)
self.assertEqual(number_of_pseudo_seqs(self.aln2),18)
self.assertEqual(number_of_pseudo_seqs(self.aln3),4)
self.assertEqual(number_of_pseudo_seqs(self.aln4),9)
def test_pseudo_seqs_exact(self):
"""pseudo_seqs_exact: should generate expected pseudo sequences"""
self.assertEqualItems(pseudo_seqs_exact(self.aln1),\
['AAC','ABC','ACC','BAC','BBC','BCC'])
self.assertEqualItems(pseudo_seqs_exact(self.aln3),\
['AA','AB','BA','BB'])
self.assertEqual(len(pseudo_seqs_exact(self.aln2)), 18)
def test_pseudo_seqs_monte_carlo(self):
"""pseudo_seqs_monte_carlo: random sample from all possible pseudo seqs
"""
self.assertEqual(len(list(pseudo_seqs_monte_carlo(self.aln1,n=100))),\
100)
for i in pseudo_seqs_monte_carlo(self.aln3,n=100):
self.assertContains(['AA','AB','BA','BB'], i)
def test_row_to_vote(self):
"""row_to_vote: should return correct votes for int and float distances
"""
self.assertEqual(row_to_vote(array([2,3,4,5])),array([1,0,0,0]))
self.assertEqual(row_to_vote(array([2,3,2,5])),array([.5,0,0.5,0]))
self.assertEqual(row_to_vote(array([2.3,3.5,2.1,5.8]))\
,array([0,0,1,0]))
def test_distance_matrix(self):
"""distance_matrix should obey Names of alignment"""
#Names=None
aln1_exp = array([[0,2,2],[2,0,1],[2,1,0]])
self.assertEqual(distance_matrix(self.aln1),aln1_exp)
a = Alignment(self.aln1.NamedSeqs)
a.Names=['seq_1','seq_2','seq_0']
a_exp = array([[0,1,2],[1,0,2],[2,2,0]])
self.assertEqual(distance_matrix(a),a_exp)
def test_eigenvector_for_largest_eigenvalue(self):
"""eigenvector_for_largest_eigenvalue: No idea how to test this"""
pass
def test_distance_to_closest(self):
"""distance_to_closest: should return closest distances"""
self.assertEqual(distance_to_closest(self.aln1),[2,1,1])
self.assertEqual(distance_to_closest(self.aln2),[2,1,1,2])
def test_SeqToProfile(self):
"""SequenceToProfile: should work with different parameter settings
"""
seq = DnaSequence("ATCGRYN-")
#Only non-degenerate bases in the char order, all other
#characters are ignored. In a sequence this means that
#several positions will contain only zeros in the profile.
exp = zeros([len(seq),4],Float64)
for x,y in zip(range(len(seq)),[2,0,1,3]):
exp[x,y] = 1
self.assertEqual(SeqToProfile(seq,char_order="TCAG",\
split_degenerates=False).Data.tolist(),exp.tolist())
#Same thing should work as well when the char order is not passed in
exp = zeros([len(seq),4],Float64)
for x,y in zip(range(len(seq)),[2,0,1,3]):
exp[x,y] = 1
self.assertEqual(SeqToProfile(seq, split_degenerates=False)\
.Data.tolist(),exp.tolist())
#All symbols in the sequence are in the char order, no row
#should contain only zeros. Degenerate symbols are not split.
exp = zeros([len(seq),8],Float64)
for x,y in zip(range(len(seq)),[2,0,1,3,4,5,6,7]):
exp[x,y] = 1
self.assertEqual(SeqToProfile(seq,char_order="TCAGRYN-",\
split_degenerates=False).Data.tolist(), exp.tolist())
#splitting all degenerate symbols, having only non-degenerate symbols
#in the character order (and -)
exp = array([[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],
[0,0,.5,.5,0],[.5,.5,0,0,0],[.25,.25,.25,.25,0],[0,0,0,0,1]])
self.assertEqual(SeqToProfile(seq,char_order="TCAG-",\
split_degenerates=True).Data.tolist(),exp.tolist())
#splitting degenerates, but having one of the degenerate
#symbols in the character order. In that case the degenerate symbol
#is not split.
exp = array([[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],
[0,0,.5,.5,0,0],[.5,.5,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]])
self.assertEqual(SeqToProfile(seq,char_order="TCAGN-",\
split_degenerates=True).Data.tolist(),exp.tolist())
def test_AlignmentToProfile_basic(self):
"""AlignmentToProfile: should work under basic conditions
"""
#sequences in the alignment are unweighted
#Alphabet is the alphabet of the sequences (RNA)
#CharOrder is set explicitly
#Degenerate bases are split up
#Gaps are ignored
#In all of the columns at least one character is in the CharOrder
a = Alignment({'a':RnaSequence('UCAGRYN-'),'b':RnaSequence('ACUGAAAA')})
exp =\
array([[.5,0,.5,0],
[0,1,0,0],
[.5,0,.5,0],
[0,0,0,1],
[0,0,.75,.25],
[.25,.25,.5,0],
[.125,.125,.625,.125],
[0,0,1,0]])
self.assertEqual(AlnToProfile(a,alphabet=RNA,\
split_degenerates=True).Data.tolist(),exp.tolist())
def test_AlignmentToProfile_ignore(self):
"""AlignmentToProfile: should raise an error if too many chars ignored
"""
#Same conditions as previous function, but in the last column
#there are only gaps, so normalization will fail at that position
a = Alignment({'a':RnaSequence('UCAGRYN-'),'b':RnaSequence('ACUGAAA-')})
exp =\
array([[.5,0,.5,0],
[0,1,0,0],
[.5,0,.5,0],
[0,0,0,1],
[0,0,.75,.25],
[.25,.25,.5,0],
[.125,.125,.625,.125],
[0,0,1,0]])
self.assertRaises(ValueError,AlnToProfile,a,alphabet=RNA,\
split_degenerates=True)
def test_AlignmentToProfile_weighted(self):
"""AlignmentToProfile: should work when sequences are weighted
"""
#Alignment: sequences are just strings and don't have an alphabet
#Weights: a normal dictionary (could be a real Weights object as well)
a = Alignment({'seq1':'TCAG','seq2':'TAR-','seq3':'YAG-'},\
Names=['seq1','seq2','seq3'])
w = {'seq1':0.5,'seq2':.25,'seq3':.25}
#Error will be raised when no Alphabet is given, since the seqs
#in the alignment are just strings
self.assertRaises(AttributeError,AlnToProfile,a)
#Basic situation in which all letters in the sequences occur in the
#CharOrder, None have to be ignored. In that case it doesn't matter
#whether we set split_degenerates to True or False, because if it's
#True it's overwritten by the fact that the char is in the CharOrder.
exp = array([[0.75,0,0,0,0,.25,0],
[0,0.5,0.5,0,0,0,0],
[0,0.5,0,0.25,0.25,0,0],
[0,0,0,0.5,0,0,0.5]])
#split_degenerates = False
self.assertEqual(AlnToProfile(a,DNA, char_order="TACGRY-",\
weights=w, split_degenerates=False).Data.tolist(),exp.tolist())
#split_degenerates = True
self.assertEqual(AlnToProfile(a,DNA, char_order="TACGRY-",\
weights=w, split_degenerates=True).Data.tolist(),exp.tolist())
#Only non-degenerate symbols in the CharOrder. Degenerates are split.
#Gaps are ignored
exp = array([[0.875,0,0.125,0],
[0,0.5,0.5,0],
[0,0.625,0,0.375],
[0,0,0,1]])
self.assertEqual(AlnToProfile(a,DNA, char_order="TACG",\
weights=w, split_degenerates=True).Data.tolist(),exp.tolist())
#An Error is raised if all chars in an alignment column are ignored
#CharOrder=AT, degenerates are not split.
self.assertRaises(ValueError,AlnToProfile,a,DNA,\
char_order="AT",weights=w, split_degenerates=True)
if __name__ == "__main__":
main()
|