File: test_profile.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (750 lines) | stat: -rw-r--r-- 33,060 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#!/usr/bin/env python
"""Provides tests for classes and functions in profile.py
"""
from __future__ import division
from string import translate
from numpy import array, sum, sqrt, transpose, add, subtract, multiply,\
    divide, zeros
from numpy.random import random

from cogent.util.unit_test import TestCase, main#, numpy_err 
from cogent.core.moltype import DNA
from cogent.core.sequence import ModelSequence
from cogent.core.profile import Profile, ProfileError, CharMeaningProfile
from cogent.core.alignment import DenseAlignment as Alignment

__author__ = "Sandra Smit"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Sandra Smit", "Gavin Huttley", "Rob Knight",
                    "Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Sandra Smit"
__email__ = "sandra.smit@colorado.edu"
__status__ = "Production"

class ProfileTests(TestCase):
    """Tests for Profile object"""

    def setUp(self):
        """setUp method for all Profile tests"""
        self.full = Profile(array([[2,4],[3,5],[4,8]]),"AB")
        self.empty = Profile(array([[]]),"AB")
        self.empty_row = Profile(array([[1,1],[0,0]]), "AB")
        self.empty_col = Profile(array([[0,1],[0,1]]), "AB")
        self.consensus = Profile(array([[.2,0,.8,0],[0,.1,.2,.7],[0,0,0,1],\
            [.2,.3,.4,.1],[.5,.5,0,0]]),\
            Alphabet=DNA, CharOrder="TCAG")
        self.not_same_value = Profile(array([[.3,.5,.1,.1],[.4,.6,0,.7],\
            [.3,.2,0,0],[0,0,4,0]]),Alphabet=DNA, CharOrder="TCAG")
        self.zero_entry = Profile(array([[.3,.2,0,.5],[0,0,.8,.2]]),\
            Alphabet="UCAG")
        self.score1 = Profile(Data=array([[-1,0,1,2],[-2,2,0,0],[-3,5,1,0]]),\
            Alphabet=DNA, CharOrder="ATGC")
        self.score2 = Profile(array([[.2,.4,.4,0],[.1,0,.9,0],[.1,.2,.3,.4]]),\
            Alphabet="TCAG")
        self.oned = Profile(array([.25,.25,.25,.25]),"ABCD")
        self.pp = Profile(array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]),"ABCD")
        
    def test_init(self):
        """__init__: should set all attributed correctly"""
        self.assertRaises(TypeError, Profile)
        self.assertRaises(TypeError, Profile, array([[2,3]]))
        #only alphabet
        p = Profile(array([[.2,.8],[.7,.3]]),"AB")
        self.assertEqual(p.Data, [[.2,.8],[.7,.3]])
        self.assertEqual(p.Alphabet, "AB")
        self.assertEqual(p.CharOrder, list("AB"))
        self.assertEqual(translate("ABBA",p._translation_table),
            "\x00\x01\x01\x00")
        #alphabet and char order
        p = Profile(array([[.1,.2],[.4,.3]]),Alphabet=DNA,
            CharOrder="AG")
        self.assertEqual(p.CharOrder,"AG")
        assert p.Alphabet is DNA
        #non-character alphabet        
        p = Profile(array([[.1,.2],[.4,.3]]),Alphabet=[7,3],
            CharOrder=[3,7])
        self.assertEqual(p.CharOrder,[3,7])
        self.assertEqual(p.Alphabet, [7,3])
        self.assertEqual(p.Data, [[.1,.2],[.4,.3]])
   
    def test_str(self):
        """__str__: should return string representation of data in profile
        """
        self.assertEqual(str(self.empty_row),str(array([[1,1],[0,0]])))

    def test_make_translation_table(self):
        """_make_translation_table: should return correct table from char order
        """
        p = Profile(array([[.2,.8],[.7,.3]]),"ABCDE","AB")
        self.assertEqual(translate("ABBA",p._translation_table),
            "\x00\x01\x01\x00")

    def test_hasValidData(self):
        """hasValidData: should work on full and empty profiles"""
        full = self.full.copy()
        full.normalizePositions()
        self.assertEqual(full.hasValidData(),True)
        self.assertEqual(self.empty_row.hasValidData(),False)
        self.assertEqual(self.empty.hasValidData(),False)

    def test_hasValidAttributes(self):
        """hasValidAttributes: should work for different alphabets/char orders
        """
        p = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="BAC")
        #self.Data doesn't match len(CharOrder)
        self.assertEqual(p.hasValidAttributes(),False)
        p = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="AX")
        #not all chars in CharOrder in Alphabet
        self.assertEqual(p.hasValidAttributes(),False)
        p = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="CB")
        #should be fine
        self.assertEqual(p.hasValidAttributes(),True)

    def test_isValid(self):
        """isValid: should work as expected"""
        #everything valid
        p1 = Profile(array([[.3,.7],[.8,.2]]),Alphabet="AB",CharOrder="AB")
        #invalid data, valid attributes
        p2 = Profile(array([[1,2],[3,4]]),Alphabet="ABCD", CharOrder="BA")
        #invalid attributes, valid data
        p3 = Profile(array([[.3,.7],[.8,.2]]),Alphabet="ABCD",CharOrder="AF")

        self.assertEqual(p1.isValid(),True)
        self.assertEqual(p2.isValid(),False)
        self.assertEqual(p3.isValid(),False)

    def test_dataAt(self):
        """dataAt: should work on valid position and character"""
        p = Profile(array([[.2,.4,.4,0],[.1,0,.9,0],[.1,.2,.3,.4]]),\
            Alphabet="TCAG")
        self.assertEqual(p.dataAt(0,'C'),.4)
        self.assertEqual(p.dataAt(1,'T'),.1)
        self.assertRaises(ProfileError, p.dataAt, 1, 'U')
        self.assertRaises(ProfileError, p.dataAt, -2, 'T')
        self.assertRaises(ProfileError, p.dataAt, 5, 'T')

    def test_copy(self):
        """copy: should act as expected while rebinding/modifying attributes
        """
        p = Profile(array([[1,1],[.7,.3]]),{'A':'A','G':'G','R':'AG'},"AG")
        p_copy = p.copy()
        assert p.Data is p_copy.Data
        assert p.Alphabet is p_copy.Alphabet
        assert p.CharOrder is p_copy.CharOrder
        
        #modifying p.Data modifies p_copy.Data
        p.Data[1,1] = 100
        assert p.Alphabet is p_copy.Alphabet
        
        #normalizing p.Data rebinds it, so p_copy.Data is unchanged
        p.normalizePositions()
        assert not p.Data is p_copy.Data
        
        #Adding something to the alphabet changes both p and p_copy
        p.Alphabet['Y']='TC'
        assert p.Alphabet is p_copy.Alphabet

        #Rebinding the CharOrder does only change the original
        p.CharOrder='XX'
        assert not p.CharOrder is p_copy.CharOrder

    def test_normalizePositions(self):
        """normalizePositions: should normalize or raise appropriate error
        """
        p = self.full.copy()
        p.normalizePositions()
        self.assertEqual(p.Data,array([[2/6,4/6],[3/8,5/8],[4/12,8/12]]))
        self.assertEqual(sum(p.Data,1),[1,1,1])
        p = self.empty_col.copy()
        p.normalizePositions()
        self.assertEqual(p.Data,array([[0,1],[0,1]]))
        p = self.empty_row.copy()
        self.assertRaises(ProfileError,p.normalizePositions)
        p = Profile(array([[0.0,0.0]]),"AB")
        self.assertRaises(ProfileError,p.normalizePositions)

        #negative numbers!!!!!!
        p1 = Profile(array([[3,-2],[4,-3]]),"AB")
        p1.normalizePositions()
        self.assertEqual(p1.Data,array([[3,-2],[4,-3]]))
        p2 = Profile(array([[3,-3],[4,-3]]),"AB")
        self.assertRaises(ProfileError,p2.normalizePositions)

    def test_normalizeSequences(self):
        """normalizeSequences: should normalize or raise appropriate error
        """
        p = self.full.copy()
        p.normalizeSequences()
        self.assertEqual(p.Data,array([[2/9,4/17],[3/9,5/17],[4/9,8/17]]))
        self.assertEqual(sum(p.Data, axis=0),[1,1])
        p = self.empty_row.copy()
        p.normalizeSequences()
        self.assertEqual(p.Data,array([[1,1],[0,0]]))
        p = self.empty_col.copy()
        self.assertRaises(ProfileError,p.normalizeSequences)
        p = Profile(array([[0.0],[0.0]]),"AB")
        self.assertRaises(ProfileError,p.normalizeSequences)

        #negative numbers!!!!!!
        p1 = Profile(array([[3,4],[-2,-3]]),"AB")
        p1.normalizeSequences()
        self.assertEqual(p1.Data,array([[3,4],[-2,-3]]))
        p2 = Profile(array([[3,4],[-3,-3]]),"AB")
        self.assertRaises(ProfileError,p2.normalizeSequences)

    def test_prettyPrint_without_parameters(self):
        """prettyPrint: should work without parameters passed in"""
        p = self.full
        self.assertEqual(p.prettyPrint(),"2\t4\n3\t5\n4\t8")
        self.assertEqual(p.prettyPrint(include_header=True),\
            "A\tB\n2\t4\n3\t5\n4\t8")
        self.assertEqual(p.prettyPrint(transpose_data=True),\
            "2\t3\t4\n4\t5\t8")
        self.assertEqual(p.prettyPrint(include_header=True,\
            transpose_data=True),"A\t2\t3\t4\nB\t4\t5\t8")
        #empty
        self.assertEqual(self.empty.prettyPrint(),"")
        self.assertEqual(self.empty.prettyPrint(transpose_data=True),"")
        
        #it will still print with invalid data (e.g if len(CharOrder)
        #doesn't match the data
        p = self.full.copy()
        p.CharOrder="ABC"
        
        self.assertEqual(p.prettyPrint(include_header=True),\
            "A\tB\tC\n2\t4\t \n3\t5\t \n4\t8\t ")
        #it will truncate the CharOrder if data is transposed
        #and CharOrder is longer then the number of rows in the 
        #transposed data
        self.assertEqual(p.prettyPrint(include_header=True,\
            transpose_data=True),"A\t2\t3\t4\nB\t4\t5\t8")

    def test_prettyPrint_four_cases(self):
        """prettyPrint: with/without header/transpose/limit"""
        p = self.full
        p = self.pp
        self.assertEqual(p.prettyPrint(),\
            "1\t 2\t 3\t 4\n5\t 6\t 7\t 8\n9\t10\t11\t12")
        self.assertEqual(p.prettyPrint(column_limit=3),\
            "1\t 2\t 3\n5\t 6\t 7\n9\t10\t11")
        self.assertEqual(p.prettyPrint(column_limit=3, include_header=True),\
            "A\t B\t C\n1\t 2\t 3\n5\t 6\t 7\n9\t10\t11")
        self.assertEqual(p.prettyPrint(column_limit=3, include_header=False,\
            transpose_data=True),\
            "1\t5\t 9\n2\t6\t10\n3\t7\t11\n4\t8\t12")
        self.assertEqual(p.prettyPrint(column_limit=2, include_header=False,\
            transpose_data=True),\
            "1\t5\n2\t6\n3\t7\n4\t8")
        self.assertEqual(p.prettyPrint(column_limit=3, include_header=True,\
            transpose_data=True),\
            "A\t1\t5\nB\t2\t6\nC\t3\t7\nD\t4\t8")

    def test_reduce_wrong_size(self):
        """reduce: should fail when profiles have different sizes"""
        p1 = Profile(array([[1,0],[0,1]]),Alphabet="AB")
        p2 = Profile(array([[1,0,0],[1,0,0]]),Alphabet="ABC")
        self.assertRaises(ProfileError,p1.reduce,p2)
        
    def test_reduce_normalization_error(self):
        """reduce: fails when input or output can't be normalized"""
        #Will raise errors when input data can't be normalized
        self.assertRaises(ProfileError,self.empty.reduce,self.empty,add)
        self.assertRaises(ProfileError,self.full.reduce,self.empty_row,add)

        #don't normalize input, but do normalize output
        #fails when one row adds up to zero
        p1 = Profile(array([[3,3],[4,4]]),"AB")
        p2 = Profile(array([[3,3],[-4,-4]]),"AB")
        self.assertRaises(ProfileError,p1.reduce,p2,add,False,True)
    
    def test_reduce_operators(self):
        """reduce: should work fine with different operators
        """
        #different operators, normalize input, don't normalize output
        p1 = Profile(array([[1,0,0],[0,1,0]]),Alphabet="ABC")
        p2 = Profile(array([[1,0,0],[0,0,1]]),Alphabet="ABC")

        self.assertEqual(p1.reduce(p2).Data,array([[1,0,0],[0,.5,.5]]))
        self.assertEqual(p1.reduce(p2,add,normalize_input=True,\
            normalize_output=False).Data,array([[2,0,0],[0,1,1]]))
        self.assertEqual(p1.reduce(p2,subtract,normalize_input=True,\
            normalize_output=False).Data,array([[0,0,0],[0,1,-1]]))
        self.assertEqual(p1.reduce(p2,multiply,normalize_input=True,\
            normalize_output=False).Data,array([[1,0,0],[0,0,0]]))
        
        self.assertRaises(ProfileError,p1.reduce,p2,divide,\
            normalize_input=True,normalize_output=False)

        #don't normalize and normalize only input
        p3 = Profile(array([[1,2],[3,4]]),Alphabet="AB")
        p4 = Profile(array([[4,3],[2,1]]),Alphabet="AB")
        
        self.assertEqual(p3.reduce(p4,add,normalize_input=False,\
            normalize_output=False).Data,array([[5,5],[5,5]]))
        self.assertFloatEqual(p3.reduce(p4,add,normalize_input=True,\
            normalize_output=False).Data,array([[19/21,23/21],[23/21,19/21]]))

        #normalize input and output
        p5 = Profile(array([[1,1,0,0],[1,1,1,1]]),Alphabet="ABCD")
        p6 = Profile(array([[1,0,0,0],[1,0,0,1]]),Alphabet="ABCD")

        self.assertEqual(p5.reduce(p6,add,normalize_input=True,\
            normalize_output=True).Data,array([[.75,.25,0,0],\
            [.375,.125,.125,.375]]))
     
        #it can collapse empty profiles when normalizing is turned off
        self.assertEqual(self.empty.reduce(self.empty,\
            normalize_input=False,normalize_output=False).Data.tolist(),[[]])
       
        #more specific tests of the operators will be in the 
        #separate functions

    def test__add_(self):
        """__add__: should not normalize input or output, just add"""
        p1 = Profile(array([[.3,.4,.1,0],[.1,.1,.1,.7]]),Alphabet="ABCD")
        p2 = Profile(array([[1,0,0,0],[1,0,0,1]]),Alphabet="ABCD")
        self.assertEqual((p1+p2).Data, array([[1.3,.4,.1,0],[1.1,.1,.1,1.7]]))
        self.assertRaises(ProfileError,self.empty.__add__, p1)
        self.assertEqual((self.empty + self.empty).Data.tolist(),[[]])

    def test__sub_(self):
        """__sub__: should subtract two profiles, no normalization"""
        p1 = Profile(array([[.3,.4,.1,0],[.1,.1,.1,.7]]),Alphabet="ABCD")
        p2 = Profile(array([[1,0,0,0],[1,0,0,1]]),Alphabet="ABCD")
        self.assertFloatEqual((p1-p2).Data, array([[-.7,.4,.1,0],\
            [-.9,.1,.1,-.3]]))

    def test__mul_(self):
        """__mul__: should multiply two profiles, no normalization"""
        p1 = Profile(array([[1,-2,3,0],[1,1,1,.5]]),Alphabet="ABCD")
        p2 = Profile(array([[1,0,0,0],[1,0,3,2]]),Alphabet="ABCD")
        self.assertEqual((p1*p2).Data, array([[1,0,0,0],\
            [1,0,3,1]]))

    def test__div_(self):
        """__div__ and __truediv__: always true division b/c __future__.division
        """
        p1 = Profile(array([[2,3],[4,5]]),"AB")
        p2 = Profile(array([[1,0],[4,5]]),"AB") #Int 0
        p3 = Profile(array([[1,0.0],[4,5]]),"AB") #Float 0.0
        p4 = Profile(array([[1,2],[8.0,5]]),"AB") #Float 0.0

        self.assertRaises(ProfileError, p1.__truediv__,p2)
        #infinity in result data
        self.assertRaises(ProfileError, p1.__div__, p3)
        self.assertFloatEqual((p1.__div__(p4)).Data, array([[2,1.5],[0.5,1]]))
    
    def test_distance(self):
        """distance: should return correct distance between the profiles
        """
        p1 = Profile(array([[2,4],[3,1]]), "AB")
        p2 = Profile(array([[4,6],[5,3]]), "AB")
        p3 = Profile(array([[4,6],[5,3],[1,1]]), "AB")
        p4 = Profile(array([2,2]),"AB")
        p5 = Profile(array([2,2,2]),"AB")
        p6 = Profile(array([[]]),"AB")

        self.assertEqual(p1.distance(p2),4)
        self.assertEqual(p2.distance(p1),4)
        self.assertEqual(p1.distance(p4),sqrt(6))
        self.assertEqual(p6.distance(p6),0)
        
        #Raises error when frames are not aligned
        self.assertRaises(ProfileError, p1.distance,p3)
        self.assertRaises(ProfileError,p1.distance,p5)

    def test_toOddsMatrix(self):
        """toOddsMatrix: should work on valid data or raise an error
        """
        p = Profile(array([[.1,.3,.5,.1],[.25,.25,.25,.25],\
            [.05,.8,.05,.1],[.7,.1,.1,.1],[.6,.15,.05,.2]]),\
            Alphabet="ACTG")
        p_exp = Profile(array([[.4, 1.2, 2, .4],[1,1,1,1],[.2,3.2,.2,.4],\
            [2.8,.4,.4,.4],[2.4,.6,.2,.8]]),Alphabet="ACTG")
        self.assertEqual(p.toOddsMatrix().Data,p_exp.Data)
        assert p.Alphabet is p.toOddsMatrix().Alphabet
        self.assertEqual(p.toOddsMatrix([.25,.25,.25,.25]).Data,p_exp.Data)
        
        #fails if symbol_freqs has wrong size
        self.assertRaises(ProfileError, p.toOddsMatrix,\
            [.25,.25,.25,.25,.25,.25])
        self.assertRaises(ProfileError, self.zero_entry.toOddsMatrix,\
            [.1,.2,.3])
        #works on empty profile
        self.assertEqual(self.empty.toOddsMatrix().Data.tolist(),[[]])
        #works with different input
        self.assertEqual(self.zero_entry.toOddsMatrix().Data,\
            array([[1.2,.8,0,2],[0,0,3.2,.8]]))
        self.assertFloatEqual(self.zero_entry.toOddsMatrix([.1,.2,.3,.4]).Data,\
            array([[3,1,0,1.25],[0,0,2.667,.5]]),1e-3)
        #fails when one of the background frequencies is 0
        self.assertRaises(ProfileError, self.zero_entry.toOddsMatrix,\
            [.1,.2,.3,0])
        
    def test_toLogOddsMatrix(self):
        """toLogOddsMatrix: should work as expected"""
        #This test can be short, because it mainly depends on toOddsMatrix
        #for which everything has been tested
        p = Profile(array([[.1,.3,.5,.1],[.25,.25,.25,.25],\
            [.05,.8,.05,.1],[.7,.1,.1,.1],[.6,.15,.05,.2]]),\
            Alphabet="ACTG")
        p_exp = Profile(array(\
            [[-1.322, 0.263, 1., -1.322],\
             [ 0., 0., 0., 0.],\
             [-2.322,  1.678, -2.322, -1.322],\
             [ 1.485, -1.322, -1.322, -1.322],\
             [ 1.263, -0.737, -2.322, -0.322]]),\
             Alphabet="ACTG")
        self.assertFloatEqual(p.toLogOddsMatrix().Data,p_exp.Data,eps=1e-3) 
        #works on empty matrix
        self.assertEqual(self.empty.toLogOddsMatrix().Data.tolist(),[[]])

    def test__score_indices(self):
        """_score_indices: should work on valid input"""
        self.assertEqual(self.score1._score_indices(array([0,1,1,3,0,3]),\
            offset=0),[6,2,-3,0])
        self.assertFloatEqual(self.score2._score_indices(\
            array([3,1,2,0,2,2,3]), offset=0),[.3,1.4,.8,1.4,1.7])
        self.assertFloatEqual(self.score2._score_indices(\
            array([3,1,2,0,2,2,3]), offset=3),[1.4,1.7])
        #Errors will be raised on invalid input. Errors are not handled
        #in this method. Validation of the input is done elsewhere
        self.assertRaises(IndexError,self.score2._score_indices,\
            array([3,1,63,0,4,2,3]), offset=3) 
        
    def test__score_profile(self):
        """_score_profile: should work on valid input"""
        p1 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,.5,.5],[0,0,0,1],\
            [.25,.25,.25,.25]]),"TCAG")
        p2 = Profile(array([[0,1,0,0],[.2,0,.8,0],[0,0,.5,.5],[1/3,1/3,0,1/3],\
            [.25,.25,.25,.25]]),"TCAG")

        self.assertFloatEqual(self.score2._score_profile(p1,offset=0),\
            [.55,1.25,.45])
        self.assertFloatEqual(self.score2._score_profile(p1,offset=2),\
            [.45])
        self.assertFloatEqual(self.score2._score_profile(p2,offset=0),\
            [1.49,1.043,.483],1e-3)

        #Errors will be raised on invalid input. Errors are not handled
        #in this method. Validation of the input is done elsewhere
        #In this case you don't get an error, but for sure an unexpected
        #result
        self.assertFloatEqual(self.score2._score_profile(p1,offset=3).tolist(),\
            [])

    def test_score_sequence(self):
        """score: should work correctly for Sequence as input
        """
       #works on normal valid data
        s1 = self.score1.score("ATTCAC",offset=0)
        self.assertEqual(s1,\
            [6,2,-3,0])
        self.assertFloatEqual(self.score2.score("TCAAGT",offset=0),
            [.5,1.6,1.7,0.5])
        #works with different offset
        self.assertFloatEqual(self.score2.score("TCAAGT",offset=2),
            [1.7,0.5])
        self.assertFloatEqual(self.score2.score("TCAAGT",offset=3),
            [0.5])
        #raises error on invalid offset 
        self.assertRaises(ProfileError,self.score2.score,\
            "TCAAGT",offset=4)
        #works on seq of minimal length
        self.assertFloatEqual(self.score2.score("AGT",offset=0),
            [0.5])
        #raises error when sequence is too short
        self.assertRaises(ProfileError, self.score2.score,"",offset=0)
        #raises error on empty profile
        self.assertRaises(ProfileError,self.empty.score,"ACGT")
        #raises error when sequence contains characters that 
        #are not in the characterorder
        self.assertRaises(ProfileError,self.score2.score,"ACBRT") 

    def test_score_sequence_object(self):
        """score: should work correctly on Sequence object as input
        """
        # DnaSequence object
        ds = self.score1.score(DNA.Sequence("ATTCAC"),offset=0)
        self.assertEqual(ds, [6,2,-3,0])
        # ModelSequence object
        ms = self.score1.score(ModelSequence("ATTCAC", Alphabet=DNA.Alphabet),\
            offset=0)
        self.assertEqual(ms, [6,2,-3,0])

    def test_score_no_trans_table(self):
        """score: should work when no translation table is present
        """
        p = Profile(Data=array([[-1,0,1,2],[-2,2,0,0],[-3,5,1,0]]),\
            Alphabet=DNA, CharOrder="ATGC")
        # remove translation table
        del p.__dict__['_translation_table']
        # then score the profile
        s1 = p.score(DNA.Sequence("ATTCAC"),offset=0)
        self.assertEqual(s1, [6,2,-3,0])

    def test_score_profile(self):
        """score: should work correctly for Profile as input
        """
        p1 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,.5,.5],[0,0,0,1],\
            [.25,.25,.25,.25]]),"TCAG")
        p2 = Profile(array([[0,1,0,0],[.2,0,.8,0],[0,0,.5,.5],[1/3,1/3,0,1/3],\
            [.25,.25,.25,.25]]),"TCAG")
        p3 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,0,1]]),"TCAG")
        p4 = Profile(array([[1,0,0,0],[0,1,0,0]]),"TCAG")
        p5 = Profile(array([[1,0,0,0],[0,1,0,0],[0,0,0,1]]),"AGTC")

        #works on normal valid data
        self.assertFloatEqual(self.score2.score(p1,offset=0),\
            [.55,1.25,.45])
        self.assertFloatEqual(self.score2.score(p2,offset=0),
            [1.49,1.043,.483],1e-3)
        #works with different offset
        self.assertFloatEqual(self.score2.score(p1,offset=1),
            [1.25,0.45])
        self.assertFloatEqual(self.score2.score(p1,offset=2),
            [0.45])
        #raises error on invalid offset 
        self.assertRaises(ProfileError,self.score2.score,\
            p1,offset=3)
        #works on profile of minimal length
        self.assertFloatEqual(self.score2.score(p3,offset=0),
            [0.6])
        #raises error when profile is too short
        self.assertRaises(ProfileError, self.score2.score,p4,offset=0)
        #raises error on empty profile
        self.assertRaises(ProfileError,self.empty.score,p1)
        #raises error when character order doesn't match
        self.assertRaises(ProfileError,self.score2.score,p5) 
 
    def test_rowUncertainty(self):
        """rowUncertainty: should handle full and empty profiles
        """
        p = Profile(array([[.25,.25,.25,.25],[.5,.5,0,0]]),"ABCD")
        self.assertEqual(p.rowUncertainty(),[2,1])
        
        #for empty rows 0 is returned as the uncertainty
        self.assertEqual(self.empty.rowUncertainty().tolist(),[])
        p = Profile(array([[],[],[]]),"")
        self.assertEqual(p.rowUncertainty().tolist(),[])
        #doesn't work on 1D array
        self.assertRaises(ProfileError,self.oned.rowUncertainty)
    
    def test_columnUncertainty(self):
        """columnUncertainty: should handle full and empty profiles
        """
        p = Profile(array([[.25,.5],[.25,.5],[.25,0],[.25,0]]),"AB")
        self.assertEqual(p.columnUncertainty(),[2,1])
        #for empty cols nothing is returned as the uncertainty
        self.assertEqual(self.empty.columnUncertainty().tolist(),[])
        p = Profile(array([[],[],[]]),"")
        self.assertEqual(p.columnUncertainty().tolist(),[])
        #doesn't work on 1D array
        self.assertRaises(ProfileError,self.oned.columnUncertainty)
 
    def test_rowDegeneracy(self):
        """rowDegneracy: should work as expected"""
        p1 = self.consensus
        p2 = self.not_same_value
        
        self.assertEqual(p1.rowDegeneracy(),[1,1,1,2,1])
        self.assertEqual(p1.rowDegeneracy(cutoff=.5),[1,1,1,2,1])
        self.assertEqual(p1.rowDegeneracy(cutoff=.75),[1,2,1,3,2])
        #when a row seems to add up to the cutoff value, it's not
        #always found because of floating point error. E.g. second row
        #in this example
        self.assertEqual(p1.rowDegeneracy(cutoff=1),[2,4,1,4,2])
        #when the cutoff can't be found, the number of columns in the 
        #profile is returned (for each row)
        self.assertEqual(p1.rowDegeneracy(cutoff=1.5),[4,4,4,4,4])

        self.assertEqual(p2.rowDegeneracy(cutoff=.95),[4,2,4,1])
        self.assertEqual(p2.rowDegeneracy(cutoff=1.4),[4,3,4,1])
        
        self.assertEqual(self.empty.rowDegeneracy(),[])

    def test_columnDegeneracy(self):
        """columnDegeneracy: shoudl work as expected"""
        p1 = self.consensus
        p1.Data = transpose(p1.Data)
        p2 = self.not_same_value
        p2.Data = transpose(p2.Data)
        p1d = p1.columnDegeneracy()
        self.assertEqual(p1d,[1,1,1,2,1])
        self.assertEqual(p1.columnDegeneracy(cutoff=.5),[1,1,1,2,1])
        self.assertEqual(p1.columnDegeneracy(cutoff=.75),[1,2,1,3,2])
        #when a row seems to add up to the cutoff value, it's not
        #always found because of floating point error. E.g. second row
        #in this example
        self.assertEqual(p1.columnDegeneracy(cutoff=1),[2,4,1,4,2])
        #when the cutoff can't be found, the number of rows in the 
        #profile is returned (for each column)
        self.assertEqual(p1.columnDegeneracy(cutoff=1.5),[4,4,4,4,4])

        self.assertEqual(p2.columnDegeneracy(cutoff=.95),[4,2,4,1])
        self.assertEqual(p2.columnDegeneracy(cutoff=1.4),[4,3,4,1])

        self.assertEqual(self.empty.columnDegeneracy(),[])

    def test_rowMax(self):
        """rowMax should return max value in each row"""
        p1 = self.consensus
        obs = p1.rowMax()
        self.assertEqual(obs, array([.8, .7, 1, .4, .5]))
    
    def test_toConsensus(self):
        """toConsensus: should work with all the different options
        """
        p = self.consensus
        self.assertEqual(p.toConsensus(fully_degenerate=False),"AGGAT")
        self.assertEqual(p.toConsensus(fully_degenerate=True),"WVGNY")
        self.assertEqual(p.toConsensus(cutoff=0.75),"ARGHY")
        self.assertEqual(p.toConsensus(cutoff=0.95),"WVGNY")
        self.assertEqual(p.toConsensus(cutoff=2),"WVGNY")

        p = self.not_same_value
        self.assertEqual(p.toConsensus(fully_degenerate=False),"CGTA")
        self.assertEqual(p.toConsensus(fully_degenerate=True),"NBYA")
        self.assertEqual(p.toConsensus(cutoff=0.75),"YSYA")
        self.assertEqual(p.toConsensus(cutoff=2),"NBYA")
        self.assertEqual(p.toConsensus(cutoff=5),"NBYA")

        #when you specify both fully_generate and a cutoff value
        #the cutoff takes priority and is used in the calculation
        self.assertEqual(p.toConsensus(cutoff=0.75,fully_degenerate=True),\
            "YSYA")

        #raises AttributeError when Alphabet doens't have Degenerates
        p = Profile(array([[.2,.8],[.7,.3]]),"AB")
        self.assertRaises(AttributeError,p.toConsensus,cutoff=.5)

    def test_toConsensus_include_all(self):
        """toConsensus: Should include all possibilities when include_all=True
        """
        p1 = Profile(array([[.2,0,.8,0],[0,.1,.2,.7],[0,0,0,1],\
            [.2,.3,.4,.1],[.5,.5,0,0]]),\
            Alphabet=DNA, CharOrder="TCAG")
        self.assertEqual(p1.toConsensus(cutoff=0.4, include_all=True),\
            "AGGAY")
        p2 = Profile(array([[.25,0.25,.25,0.25],[0.1,.1,.1,0],\
            [.4,0,.4,0],[0,.2,0.2,0.3]]),\
            Alphabet=DNA, CharOrder="TCAG")
        self.assertEqual(p2.toConsensus(cutoff=0.4,\
            include_all=True), "NHWV")

    def test_randomIndices(self):
        """randomIndices: 99% of new frequencies should be within 3*SD
        """
        r_num, c_num = 100,20
        num_elements = r_num*c_num
        r = random([r_num,c_num])
        p = Profile(r,"A"*c_num)
        p.normalizePositions()
        d = p.Data
        n = 1000
        
        #Test only works on normalized profile, b/c of 1-d below
        means = n*d
        three_stds = sqrt(d*(1-d)*n)*3
        result = [p.randomIndices() for x in range(n)]
        a = Alignment(transpose(result))

        def absoluteProfile(alignment,char_order):
            f = a.columnFreqs()
            res = zeros([len(f),len(char_order)])
            for row, freq in enumerate(f):
                for i in freq:
                    res[row, ord(i)] = freq[i]
            return res

        ap = absoluteProfile(a,p.CharOrder)
        failure = abs(ap-means) > three_stds
        assert sum(sum(failure))/num_elements <= 0.01

    def test_randomSequence(self):
        """randomSequence: 99% of new frequencies should be within 3*SD"""
        r_num, c_num = 100,20
        num_elements = r_num*c_num
        alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        r = random([r_num,c_num])
        p = Profile(r,alpha[:c_num])
        p.normalizePositions()
        d = p.Data
        n = 1000
        
        #Test only works on normalized profile, b/c of 1-d below
        means = n*d
        three_stds = sqrt(d*(1-d)*n)*3

        a = Alignment([p.randomSequence() for x in range(n)])

        def absoluteProfile(alignment,char_order):
            f = a.columnFreqs()
            res = zeros([len(f),len(char_order)])
            for row, freq in enumerate(f):
                for i in freq:
                    col = char_order.index(i)
                    res[row, col] = freq[i]
            return res

        ap = absoluteProfile(a,p.CharOrder)
        failure = abs(ap-means) > three_stds
        assert sum(sum(failure))/num_elements <= 0.01


class ModuleLevelFunctionsTest(TestCase):
    """Contains tests for the module level functions in profile.py"""
    
    def setUp(self):
        """setUp to change the alphabet for testing general CharMeaningProfile
        """
        self.alt_dna = DNA
        DnaDegenerateSymbols = {'R':'AG','N':'TCAG','Y':'TC','?':'TCAG-'}
        self.alt_dna.Degenerates = DnaDegenerateSymbols
    
    def test_CharMeaningProfile(self):
        """CharMeaningProfile: should work as expected
        """
        p1 = CharMeaningProfile(self.alt_dna,"AGCT")
        p1_exp = [('A',[1,0,0,0]),('G',[0,1,0,0]),('C',[0,0,1,0]),\
            ('T',[0,0,0,1])]
        p2 = CharMeaningProfile(self.alt_dna,"TCAG")
        p2_exp = [('A',[0,0,1,0]),('G',[0,0,0,1]),('C',[0,1,0,0]),\
            ('T',[1,0,0,0])]
        #split_degen, but only whose chars are all in char order
        #so ? is ignored right now
        p3 = CharMeaningProfile(self.alt_dna,"TCAG",split_degenerates=True)
        p3_exp = [('A',[0,0,1,0]),('G',[0,0,0,1]),('C',[0,1,0,0]),\
            ('T',[1,0,0,0]),('R',[0,0,.5,.5]),('Y',[.5,.5,0,0]),\
            ('N',[.25,.25,.25,.25])]
        #if we add '-' to the character order, ? is split up as well
        p4 = CharMeaningProfile(self.alt_dna,"TCAG-",split_degenerates=True)
        p4_exp = [('A',[0,0,1,0,0]),('G',[0,0,0,1,0]),('C',[0,1,0,0,0]),\
            ('T',[1,0,0,0,0]),('R',[0,0,.5,.5,0]),('Y',[.5,.5,0,0,0]),\
            ('N',[.25,.25,.25,.25,0]),('-',[0,0,0,0,1]),('?',[.2,.2,.2,.2,.2])]
        #Degenerate characters in the character order, when split_degenerates
        #is True, won't be split up, they'll get a 1 in their own column.
        p5 = CharMeaningProfile(self.alt_dna,"AGN",split_degenerates=True)
        p5_exp = [('A',[1,0,0]),('G',[0,1,0]),('N',[0,0,1]),\
            ('R',[.5,.5,0])]
        #defaults char_order to list(alphabet)
        p6 = CharMeaningProfile(self.alt_dna)
        p6_exp = [('A',[0,0,1,0]),('G',[0,0,0,1]),('C',[0,1,0,0]),\
            ('T',[1,0,0,0])]
        #also accepts empty char_order -> set to list(alphabet)
        p7 = CharMeaningProfile(self.alt_dna,"")
        p7_exp = [('A',[0,0,1,0]),('G',[0,0,0,1]),('C',[0,1,0,0]),\
            ('T',[1,0,0,0])]

        for obs,exp in [(p1,p1_exp),(p2,p2_exp),(p3,p3_exp),(p4,p4_exp),\
            (p5,p5_exp),(p6,p6_exp),(p7,p7_exp)]:
            nz = [(chr(i),r.tolist()) for i,r in enumerate(obs.Data) if r.any()]
            self.assertEqualItems(nz, exp)

        self.assertRaises(ValueError,CharMeaningProfile,self.alt_dna,\
            "AGNX",split_degenerates=True)
        
if __name__ == "__main__":
    main()