File: test_fast_unifrac.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (353 lines) | stat: -rw-r--r-- 13,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python
"""Unit tests for fast unifrac."""

from numpy import array, logical_not
from cogent.util.unit_test import TestCase, main
from cogent.parse.tree import DndParser
from cogent.maths.unifrac.fast_tree import (count_envs, index_tree, index_envs,
    get_branch_lengths)
from cogent.maths.unifrac.fast_unifrac import (reshape_by_name,
    meta_unifrac, shuffle_tipnames, weight_equally, weight_by_num_tips, 
    weight_by_branch_length, weight_by_num_seqs, get_all_env_names,
    consolidate_skipping_missing_matrices, consolidate_missing_zero,
    consolidate_missing_one, consolidate_skipping_missing_values,
    UniFracTreeNode, mcarlo_sig, num_comps, fast_unifrac, 
    fast_unifrac_whole_tree, PD_whole_tree, PD_generic_whole_tree,
    TEST_ON_TREE, TEST_ON_ENVS, TEST_ON_PAIRWISE, shared_branch_length,
    shared_branch_length_to_root)
from numpy.random import permutation 

__author__ = "Rob Knight and Micah Hamady"
__copyright = "Copyright 2007, the authors."
__credits__ = ["Rob Knight", "Micah Hamady", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight, Micah Hamady"
__email__ = "rob@spot.colorado.edu, hamady@colorado.edu"
__status__ = "Prototype"

class unifrac_tests(TestCase):
    """Tests of top-level functions."""
    def setUp(self):
        """Define some standard trees."""
        self.t_str = '((a:1,b:2):4,(c:3,(d:1,e:1):2):3)'
        self.t = DndParser(self.t_str, UniFracTreeNode)
        self.env_str = """
a   A   1
a   C   2
b   A   1
b   B   1
c   B   1
d   B   3
e   C   1"""
        self.env_counts = count_envs(self.env_str.splitlines())
        self.missing_env_str = """
a   A   1
a   C   2
e   C   1"""
        self.missing_env_counts = count_envs(self.missing_env_str.splitlines())
        self.extra_tip_str = """
q   A   1
w   C   2
e   A   1
r   B   1
t   B   1
y   B   3
u   C   1"""
        self.extra_tip_counts = count_envs(self.extra_tip_str.splitlines())
        self.wrong_tip_str = """
q   A   1
w   C   2
r   B   1
t   B   1
y   B   3
u   C   1"""
        self.wrong_tip_counts = count_envs(self.wrong_tip_str.splitlines())

        self.t2_str = '(((a:1,b:1):1,c:5):2,d:4)'
        self.t2 = DndParser(self.t2_str, UniFracTreeNode)
        self.env2_str = """
a   B   1
b   A   1
c   A   2
c   C   2
d   B   1
d   C   1"""
        self.env2_counts = count_envs(self.env2_str.splitlines())
        self.trees = [self.t, self.t2]
        self.envs = [self.env_counts, self.env2_counts]

        self.mc_1 = array([.5, .4, .3, .2, .1, .6, .7, .8, .9, 1.0])
       
        # from old EnvsNode tests
        self.old_t_str = '((org1:0.11,org2:0.22,(org3:0.12,org4:0.23)g:0.33)b:0.2,(org5:0.44,org6:0.55)c:0.3,org7:0.4)'

        self.old_t = DndParser(self.old_t_str, UniFracTreeNode)
        self.old_env_str = """
org1    env1    1
org1    env2    1
org2    env2    1
org3    env2    1
org4    env3    1
org5    env1    1
org6    env1    1
org7    env3    1
"""
        self.old_env_counts = count_envs(self.old_env_str.splitlines())
        self.old_node_index, self.old_nodes = index_tree(self.old_t)
        self.old_count_array, self.old_unique_envs, self.old_env_to_index, \
            self.old_node_to_index = index_envs(self.old_env_counts, self.old_node_index)
        self.old_branch_lengths = get_branch_lengths(self.old_node_index)

    def test_shared_branch_length(self):
        """Should return the correct shared branch length by env"""
        t_str = "(((a:1,b:2):3,c:4),(d:5,e:6,f:7):8);"
        envs = """
a A 1
b A 1
c A 1
d A 1
e A 1
f B 1
"""
        env_counts = count_envs(envs.splitlines())
        t = DndParser(t_str, UniFracTreeNode)
        exp = {('A',):21.0,('B',):7.0}
        obs = shared_branch_length(t, env_counts, 1)
        self.assertEqual(obs, exp)

        exp = {('A','B'):8.0}
        obs = shared_branch_length(t, env_counts, 2)
        self.assertEqual(obs, exp)

        self.assertRaises(ValueError, shared_branch_length, t, env_counts, 3)

    def test_shared_branch_length_to_root(self):
        """Should return the correct shared branch length by env to root"""
        t_str = "(((a:1,b:2):3,c:4),(d:5,e:6,f:7):8);"
        envs = """
a A 1
b A 1
c A 1
d A 1
e A 1
f B 1 
"""
        env_counts = count_envs(envs.splitlines())
        t = DndParser(t_str, UniFracTreeNode)
        exp = {'A':29.0,'B':15.0}
        obs = shared_branch_length_to_root(t, env_counts)
        self.assertEqual(obs, exp)


    def test_fast_unifrac(self):
        """Should calc unifrac values for whole tree."""
        #Note: results not tested for correctness here as detailed tests
        #in fast_tree module.
        res = fast_unifrac(self.t, self.env_counts)
        res = fast_unifrac(self.t, self.missing_env_counts)
        res = fast_unifrac(self.t, self.extra_tip_counts)
        self.assertRaises(ValueError,  fast_unifrac, self.t, \
            self.wrong_tip_counts)

    def test_fast_unifrac_whole_tree(self):
        """ should correctly compute one p-val for whole tree """
        # "should test with fake permutation but using same as old envs nodefor now"
        result = []
        num_to_do = 10
        for i in range(num_to_do):
            real_ufracs, sim_ufracs = fast_unifrac_whole_tree(self.old_t, \
                self.old_env_counts, 1000, permutation_f=permutation)
            rawp, corp = mcarlo_sig(sum(real_ufracs), [sum(x) for x in \
                sim_ufracs], 1, tail='high')
            result.append(rawp)
        self.assertSimilarMeans(result, 0.047)

    def test_PD_whole_tree(self):
        """PD_whole_tree should correctly compute PD for test tree."""
        self.t1 = DndParser('((a:1,b:2):4,(c:3,(d:1,e:1):2):3)', \
            UniFracTreeNode)
        self.env_str = """
        a   A   1
        a   C   2
        b   A   1
        b   B   1
        c   B   1
        d   B   3
        e   C   1"""
        env_counts = count_envs(self.env_str.splitlines())
        self.assertEqual(PD_whole_tree(self.t1,self.env_counts), \
            (['A','B','C'], array([7.,15.,11.])))

    def test_PD_generic_whole_tree(self):
        """PD_generic_whole_tree should correctly compute PD for test tree."""
        self.t1 = DndParser('((a:1,b:2):4,(c:3,(d:1,e:1):2):3)', \
            UniFracTreeNode)
        self.env_str = """
        a   A   1
        a   C   2
        b   A   1
        b   B   1
        c   B   1
        d   B   3
        e   C   1"""
        env_counts = count_envs(self.env_str.splitlines())
        self.assertEqual(PD_generic_whole_tree(self.t1,self.env_counts), \
            (['A','B','C'], array([7.,15.,11.])))


    def test_mcarlo_sig(self):
        """test_mcarlo_sig should calculate monte carlo sig high/low"""
        self.assertEqual(mcarlo_sig(.5, self.mc_1, 1, 'high'), (5.0/10, 5.0/10))
        self.assertEqual(mcarlo_sig(.5, self.mc_1, 1, 'low'), (4.0/10, 4.0/10))
        self.assertEqual(mcarlo_sig(.5, self.mc_1, 5, 'high'), (5.0/10, 1.0))
        self.assertEqual(mcarlo_sig(.5, self.mc_1, 5, 'low'), (4.0/10, 1.0))
        self.assertEqual(mcarlo_sig(0, self.mc_1, 1, 'low'), (0.0, "<=%.1e" % (1.0/10)))
        self.assertEqual(mcarlo_sig(100, self.mc_1, 10, 'high'), (0.0, "<=%.1e" % (1.0/10)))

    
    def test_num_comps(self):
        """ test num comps """
        self.assertEqual(num_comps(5), sum([i for i in range(1, 5)]))
        self.assertEqual(num_comps(15), sum([i for i in range(1, 15)]))
        self.assertEqual(num_comps(10000), sum([i for i in range(1, 10000)]))
        self.assertEqual(num_comps(1833), sum([i for i in range(1, 1833)]))

    def test_shuffle_tipnames(self):
        """shuffle_tipnames should return copy of tree w/ labels permuted"""
        #Note: this should never fail but is technically still stochastic
        #5! is 120 so repeating 5 times should fail about 1 in 10^10.
        for i in range(5):
            try:
                t = DndParser(self.t_str)
                result = shuffle_tipnames(t)
                orig_names = [n.Name for n in t.tips()]
                new_names = [n.Name for n in result.tips()]
                self.assertIsPermutation(orig_names, new_names)
                return
            except AssertionError:
                continue
        raise AssertionError, "Produced same permutation in 5 tries: broken?"

    def test_weight_equally(self):
        """weight_equally should return unit weight per tree"""
        self.assertEqual(weight_equally(self.trees, self.envs),
            array([1,1]))

    def test_weight_by_num_tips(self):
        """weight_by_num_tips should return tips per tree"""
        self.assertEqual(weight_by_num_tips(self.trees, self.envs),
            array([5, 4]))

    def test_weight_by_branch_length(self):
        """weight_by_branch_length should return branch length per tree"""
        self.assertEqual(weight_by_branch_length(self.trees, self.envs),
            array([17, 14]))

    def test_weight_by_num_seqs(self):
        """weight_by_num_seqs should return num seqs per tree"""
        self.assertEqual(weight_by_num_seqs(self.trees, self.envs),
            array([10, 8]))

    def test_get_all_env_names(self):
        """get_all_env_names should get all names from counts"""
        self.assertEqual(get_all_env_names(self.env_counts), 
            set('ABC'))

    def test_consolidate_skipping_missing_matrices(self):
        """consolidate_skipping_missing_matrices should skip those missing data"""
        m1 = array([[1,2],[3,4]])
        m2 = array([[1,2,3],[4,5,6],[7,8,9]])
        m3 = array([[2,2,2],[3,3,3],[4,4,4]])
        matrices = [m1,m2, m3]
        env_names = map(list, ['AB', 'ABC', 'ABC'])
        weights = [1, 2, 3]
        all_names =list('ABC')
        result = consolidate_skipping_missing_matrices(matrices, env_names, weights,
            all_names)
        self.assertFloatEqual(result, .4*m2 + .6*m3)

    def test_consolidate_missing_zero(self):
        """consolidate_missing_zero should fill missing values to zero"""
        m1 = array([[1,2],[3,4]])
        m2 = array([[1,2,3],[4,5,6],[7,8,9]])
        m3 = array([[2,2,2],[3,3,3],[4,4,4]])
        matrices = [m1,m2, m3]
        env_names = map(list, ['AB', 'ABC', 'ABC'])
        weights = [1, 2, 3]
        weights = array(weights, float)
        weights/=weights.sum()
        all_names =list('ABC')
        transformed_m1 = array([[1,2,0],[3,4,0],[0,0,0]])
        result = consolidate_missing_zero(matrices, env_names, weights,
            all_names)
        self.assertFloatEqual(result, (1/6.)*transformed_m1 + (2/6.)*m2 + (3/6.)*m3)

    def test_consolidate_missing_one(self):
        """consolidate_missing_one should fill missing off-diags to one"""
        m1 = array([[1,2],[3,4]])
        m2 = array([[1,2,3],[4,5,6],[7,8,9]])
        m3 = array([[2,2,2],[3,3,3],[4,4,4]])
        matrices = [m1,m2, m3]
        env_names = map(list, ['AB', 'ABC', 'ABC'])
        weights = [1, 2, 3]
        weights = array(weights, float)
        weights/=weights.sum()
        all_names =list('ABC')
        transformed_m1 = array([[1,2,1],[3,4,1],[1,1,0]])
        result = consolidate_missing_one(matrices, env_names, weights,
            all_names)
        self.assertFloatEqual(result, (1/6.)*transformed_m1 + (2/6.)*m2 + (3/6.)*m3)

    def test_consolidate_skipping_missing_values(self):
        """consolidate_skipping_missing_values should average over filled values"""
        m1 = array([[1,2],[3,4]])
        m2 = array([[1,2,3],[4,5,6],[7,8,9]])
        m3 = array([[2,2,2],[3,3,3],[4,4,4]])
        matrices = [m1,m2, m3]
        env_names = map(list, ['AB', 'ABC', 'ABC'])
        weights = [1., 2, 3]
        weights = array(weights)
        weights/=weights.sum()
        all_names =list('ABC')
        expected = array([[ 1/6.*1 + 2/6.*1 + 3/6.*2,
                            1/6.*2 + 2/6.*2 + 3/6.*2,
                            2/5.*3 + 3/5.*2],
                          [ 1/6.*3 + 2/6.*4 + 3/6.*3,
                            1/6.*4 + 2/6.*5 + 3/6.*3,
                            2/5.*6 + 3/5.*3],
                          [ 2/5.*7 + 3/5.*4,
                            2/5.*8 + 3/5.*4,
                            2/5.*9 + 3/5.*4]])
        result = consolidate_skipping_missing_values(matrices, env_names, weights,
            all_names)
        self.assertFloatEqual(result, expected)

    def test_reshape_by_name(self):
        """reshape_by_name should reshape matrix from old to new names"""
        old = array([[0,1,2],[3,4,5],[6,7,8]])
        old_names = 'ABC'
        new_names = 'xCyBA'
        exp = array([[0,0,0,0,0],[0,8,0,7,6],[0,0,0,0,0],\
            [0,5,0,4,3],[0,2,0,1,0]])
        self.assertEqual(reshape_by_name(old, old_names, new_names), exp)
        result = reshape_by_name(old, old_names, new_names, masked=True)
        result.fill_value=0
        self.assertEqual(result._data * logical_not(result._mask), exp)

    def test_meta_unifrac(self):
        """meta_unifrac should give correct result on sample trees"""
        tree_list = [self.t, self.t2]
        envs_list = [self.env_counts, self.env2_counts]
        result = meta_unifrac(tree_list, envs_list, weight_equally,
            modes=["distance_matrix"])

        u1_distances = array([[0, 10/16.,8/13.],[10/16.,0,8/17.],\
                            [8/13.,8/17.,0]])
        u2_distances = array([[0,11/14.,6/13.],[11/14.,0,7/13.],[6/13.,7/13., 0]])
        exp = (u1_distances + u2_distances)/2
        self.assertFloatEqual(result['distance_matrix'], (exp, list('ABC')))


if __name__ == '__main__':
    main()