1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#!/usr/bin/env python
"""Unit tests for analysis.py: substitution matrix analysis code."""
from cogent.seqsim.analysis import tree_threeway_counts, \
tree_twoway_counts, counts_to_probs, probs_to_rates, \
tree_threeway_rates, tree_twoway_rates, \
rates_to_array, multivariate_normal_prob
from cogent.seqsim.tree import RangeNode
from cogent.core.usage import DnaPairs, ABPairs
from cogent.seqsim.usage import Rates, Counts, Probs
from numpy import array, average, ones, zeros, float64, ravel, diag, any
from numpy.random import random, randint
from copy import deepcopy
from cogent.parse.tree import DndParser
from cogent.util.unit_test import TestCase, main
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class analysisTests(TestCase):
"""Tests of top-level functions."""
def setUp(self):
"""Make a couple of standard trees"""
self.t1 = DndParser('((a,(b,c)),(d,e))', RangeNode)
#selt.t1 indices: ((0,(1,2)5)6,(3,4)7)8
def test_threeway_counts(self):
"""threeway_counts should produce correct count matrix"""
self.t1.makeIdIndex()
ind = self.t1.IdIndex
ind[0].Sequence = array([0,0,0])
ind[1].Sequence = array([0,1,0])
ind[2].Sequence = array([1,0,1])
ind[3].Sequence = array([1,1,0])
ind[4].Sequence = array([1,1,1])
depths = self.t1.leafLcaDepths()
result = tree_threeway_counts(self.t1, depths, ABPairs)
#check we got the right number of comparisons
self.assertEqual(len(result), 20)
#check we got the right keys
for k in [(1,2,0),(2,1,0),(0,1,3),(1,0,3),(0,1,4),(1,0,4),(0,2,3),\
(2,0,3),(0,2,4),(2,0,4),(1,2,3),(2,1,3),(1,2,4),(2,1,4),(3,4,1),\
(4,3,1),(3,4,2),(4,3,2)]:
assert k in result
#spot-check a few results
self.assertEqual(result[(1,2,0)]._data, array([[2,1],[0,0]]))
self.assertEqual(result[(2,1,0)]._data, array([[1,2],[0,0]]))
self.assertEqual(result[(2,1,3)]._data, array([[0,1],[1,1]]))
def test_twoway_counts(self):
"""twoway_counts should produce correct count matrix"""
self.t1.makeIdIndex()
ind = self.t1.IdIndex
ind[0].Sequence = array([0,0,0])
ind[1].Sequence = array([0,1,0])
ind[2].Sequence = array([1,0,1])
ind[3].Sequence = array([1,1,0])
ind[4].Sequence = array([1,1,1])
depths = self.t1.leafLcaDepths()
#check that it works with averaging
result = tree_twoway_counts(self.t1, ABPairs)
#check we got the right number of comparisons: average by default
self.assertEqual(len(result), 10)
#check we got the right keys
for k in [(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]:
assert k in result
#spot-check a few results
self.assertEqual(result[(0,1)]._data, array([[2,.5],[.5,0]]))
self.assertEqual(result[(2,3)]._data, array([[0,1],[1,1]]))
#check that it works when we don't average
result = tree_twoway_counts(self.t1, ABPairs, average=False)
self.assertEqual(len(result), 20)
#check we got the right keys
for k in [(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]:
assert k in result
#reverse should be in result too
assert (k[1],k[0]) in result
#spot-check values
self.assertEqual(result[(0,1)]._data, array([[2,1],[0,0]]))
self.assertEqual(result[(1,0)]._data, array([[2,0],[1,0]]))
def test_counts_to_probs(self):
"""counts_to_probs should skip cases with zero rows"""
counts = {
(0,1): Counts(array([[0,1],[1,0]]), ABPairs),
(1,2): Counts(array([[0,0],[1,0]]), ABPairs), #bad row
(0,3): Counts(array([[0,0],[0,0]]), ABPairs), #bad row
(0,4): Counts(array([[0.0,0.0],[0.0,0.0]]), ABPairs), #bad row
(0,5): Counts(array([[0.1,0.3],[0.0,0.0]]), ABPairs), #bad row
(3,4): Counts(array([[0.1,0.3],[0.4,0.1]]), ABPairs),
(2,1): Counts(array([[0,5],[1,0]]), ABPairs),
}
result = counts_to_probs(counts)
self.assertEqual(len(result), 3)
self.assertFloatEqual(result[(0,1)]._data, array([[0,1],[1,0]]))
self.assertFloatEqual(result[(3,4)]._data, \
array([[0.25,0.75],[0.8,0.2]]))
self.assertFloatEqual(result[(2,1)]._data, array([[0,1],[1,0]]))
def test_probs_to_rates(self):
"""probs_to_rates converts probs to rates, omitting problem cases"""
probs = dict([(i, Probs.random(DnaPairs)) for i in range(100)])
rates = probs_to_rates(probs)
#check we got at most the same number of items as in probs
assert len(rates) <= len(probs)
#check that we didn't get anything bad
vals = rates.values()
for v in vals:
assert not v.isSignificantlyComplex()
#check that we didn't miss anything good
for key, val in probs.items():
if key not in rates:
try:
r = val.toRates()
print r.isValid()
assert r.isSignificantlyComplex() or (not r.isValid())
except (ZeroDivisionError, OverflowError, ValueError):
pass
def test_rates_to_array(self):
"""rates_to_array should pack rates into array correctly"""
m1 = array([[-1,1,1,1],[2,-2,2,2],[3,3,-3,3],[1,2,3,-4]])
m2 = m1 * 2
m3 = m1 * 0.5
m4 = zeros((4,4))
m5 = array([0,0])
r1, r2, r3, r4, r5 = [Rates(i, DnaPairs) for i in m1,m2,m3,m4,m5]
data = {(0,1,0):r1, (1,2,0):r2, (2,0,0):r3, (2,1,1):r4}
#note that array can be, but need not be, floating point
to_fill = zeros((3,3,3,16), 'float64')
result = rates_to_array(data, to_fill)
#check that the thnigs we deliberately set are OK
self.assertEqual(to_fill[0][1][0], ravel(m1))
self.assertNotEqual(to_fill[0][1][0], ravel(m2))
self.assertEqual(to_fill[1,2,0], ravel(m2))
self.assertEqual(to_fill[2][0][0], ravel(m3))
self.assertEqual(to_fill[2][1][1], ravel(m4))
#check that everything else is zero
nonzero = [(0,1,0),(1,2,0),(2,0,0)]
for x in [(i, j, k) for i in range(3) for j in range(3) \
for k in range(3)]:
if x not in nonzero:
self.assertEqual(to_fill[x], zeros(16))
#check that it works omitting the diagonal
to_fill = zeros((3,3,3,12), 'float64')
result = rates_to_array(data, to_fill, without_diagonal=True)
#check that the thnigs we deliberately set are OK
m1_nodiag = array([[1,1,1],[2,2,2],[3,3,3],[1,2,3]])
self.assertEqual(to_fill[0][1][0], ravel(m1_nodiag))
self.assertNotEqual(to_fill[0][1][0], ravel(m1_nodiag*2))
self.assertEqual(to_fill[1,2,0], ravel(m1_nodiag*2))
self.assertEqual(to_fill[2][0][0], ravel(m1_nodiag*0.5))
self.assertEqual(to_fill[2][1][1], zeros(12))
#check that everything else is zero
nonzero = [(0,1,0),(1,2,0),(2,0,0)]
for x in [(i, j, k) for i in range(3) for j in range(3) \
for k in range(3)]:
if x not in nonzero:
self.assertEqual(to_fill[x], zeros(12))
def test_tree_threeway_rates(self):
"""tree_threeway_rates should give plausible results on rand trees"""
#note: the following fails occasionally, but repeating it 5 times
#and checking that one passes is fairly safe
for i in range(5):
try:
t = self.t1
t.assignLength(0.05)
t.Q = Rates.random(DnaPairs).normalize()
t.assignQ()
t.assignP()
t.evolve(randint(0,4,100))
t.makeIdIndex()
depths = t.leafLcaDepths()
result = tree_threeway_rates(t, depths)
self.assertEqual(result.shape, (5,5,5,16))
#check that row sums are 0
for x in [(i,j,k) for i in range(5) for j in range(5) \
for k in range(5)]:
self.assertFloatEqual(sum(result[x]), 0)
assert any(result)
#check that it works without_diag
result = tree_threeway_rates(t, depths, without_diag=True)
self.assertEqual(result.shape, (5,5,5,12))
#check that it works with/without normalize
#default: no normalization, so row sums shouldn't be 1 after
#omitting diagonal
result = tree_threeway_rates(t, depths, without_diag=True)
self.assertEqual(result.shape, (5,5,5,12))
for x in [(i,j,k) for i in range(5) for j in range(5) \
for k in range(5)]:
assert sum(result[x]) == 0 or abs(sum(result[x]) - 1) > 0.01
#...but if we tell it to normalize, row sums should be nearly 1
#after omitting diagonal
result = tree_threeway_rates(t, depths, without_diag=True, \
normalize=True)
self.assertEqual(result.shape, (5,5,5,12))
for x in [(i,j,k) for i in range(5) for j in range(5) \
for k in range(5)]:
s = sum(result[x])
if s != 0:
self.assertFloatEqual(s, 1)
break
except AssertionError:
pass
def test_tree_twoway_rates(self):
"""tree_twoway_rates should give plausible results on rand trees"""
t = self.t1
t.assignLength(0.05)
t.Q = Rates.random(DnaPairs).normalize()
t.assignQ()
t.assignP()
t.evolve(randint(0,4,100))
t.makeIdIndex()
result = tree_twoway_rates(t)
self.assertEqual(result.shape, (5,5,16))
#check that row sums are 0
for x in [(i,j) for i in range(5) for j in range(5)]:
self.assertFloatEqual(sum(result[x]), 0)
#need to make sure we didn't just get an empty array
self.assertGreaterThan((abs(result)).sum(), 0)
#check that it works without_diag
result = tree_twoway_rates(t, without_diag=True)
self.assertEqual(result.shape, (5,5,12))
#check that it works with/without normalize
#default: no normalization, so row sums shouldn't be 1 after omitting
#diagonal
result = tree_twoway_rates(t, without_diag=True)
self.assertEqual(result.shape, (5,5,12))
#check that the row sums are not 1 before normalization (note that they
#can be zero, though)
sums_before = []
for x in [(i,j) for i in range(5) for j in range(5)]:
curr_sum = sum(result[x])
sums_before.append(curr_sum)
#...but if we tell it to normalize, row sums should be nearly 1
#after omitting diagonal
result = tree_twoway_rates(t, without_diag=True, \
normalize=True)
self.assertEqual(result.shape, (5,5,12))
sums_after = []
for x in [(i,j) for i in range(5) for j in range(5)]:
curr_sum = sum(result[x])
sums_after.append(curr_sum)
if curr_sum != 0:
self.assertFloatEqual(curr_sum, 1)
try:
self.assertFloatEqual(sums_before, sums_after)
except AssertionError:
pass
else:
raise AssertionError, "Expected different arrays before/after norm"
def test_multivariate_normal_prob(self):
"""Multivariate normal prob should match R results"""
cov = array([[3,1,2],[1,5,4],[2,4,6]])
a = array([0,0,0])
b = array([1,1,1])
c = array([0.1, 0.2, 0.3])
small_cov = cov/10.0
mvp = multivariate_normal_prob
self.assertFloatEqual(mvp(a, cov), 0.01122420)
self.assertFloatEqual(mvp(a, cov, b), 0.009018894)
self.assertFloatEqual(mvp(a, small_cov, b), 0.03982319)
self.assertFloatEqual(mvp(c, small_cov, b), 0.06091317)
if __name__ == "__main__":
main()
|