File: test_usage.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (955 lines) | stat: -rw-r--r-- 37,218 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
#!/usr/bin/env python
"""Unit tests for usage and substitution matrices.
"""
from cogent.util.unit_test import TestCase, main
from cogent.core.moltype import RNA
from cogent.core.usage import RnaBases, DnaBases, RnaPairs, DnaPairs
from cogent.core.alphabet import Alphabet
from cogent.core.sequence import ModelRnaSequence as RnaSequence, \
    ModelRnaCodonSequence
from cogent.seqsim.usage import Usage, DnaUsage, RnaUsage, PairMatrix, Counts,\
    Probs, Rates, goldman_q_dna_pair, goldman_q_rna_pair,\
    goldman_q_dna_triple, goldman_q_rna_triple
from numpy import average, asarray, sqrt, identity, diagonal, trace, \
                  array, sum
from cogent.maths.matrix_logarithm import logm
from cogent.maths.matrix_exponentiation import FastExponentiator as expm

#need to find test directory to get access to the tests of the Freqs interface
try:
    from os import getcwd
    from sys import path
    from os.path import sep,join
    test_path = getcwd().split(sep)
    index = test_path.index('tests')
    fields = test_path[:index+1] + ["test_maths"]
    test_path = sep + join(*fields)
    path.append(test_path)
    from test_stats.test_util import StaticFreqsTestsI

    my_alpha = Alphabet('abcde')
    class myUsage(Usage):
        Alphabet = my_alpha

    class UsageAsFreqsTests(StaticFreqsTestsI, TestCase):
        """Note that the remaining Usage methods are tested here."""
        ClassToTest=myUsage

except ValueError:  #couldn't find directory
    pass

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

NUM_TESTS = 10  #for randomization trials

class UsageTests(TestCase):
    """Tests of the Usage object."""
    def setUp(self):
        """Defines some standard test items."""
        self.ab = Alphabet('ab')

        class abUsage(Usage):
            Alphabet = self.ab
            
        self.abUsage = abUsage
        
    def test_init(self):
        """Usage init should succeed only in subclasses"""
        self.assertRaises(TypeError, Usage, [1,2,3,4])
        self.assertEqual(self.abUsage().items(), [('a',0),('b',0)])
        self.assertEqual(self.abUsage([5,6]).items(), [('a',5.0),('b',6.0)])
        #should also construct from seq, if not same length as freqs
        self.assertEqual(self.abUsage([0,0,1,1,1,0,1,1]).items(), \
            [('a',3),('b',5)])

    def test_getitem(self):
        """Usage getitem should get item via alphabet"""
        u = self.abUsage([3,4])
        self.assertEqual(u['a'], 3)
        self.assertEqual(u['b'], 4)

    def test_setitem(self):
        """Usage setitem should set item via alphabet"""
        u = self.abUsage([3,4])
        self.assertEqual(u['a'], 3)
        u['a'] = 10
        self.assertEqual(u['a'], 10)
        u['b'] += 5
        self.assertEqual(u['a'], 10)
        self.assertEqual(u['b'], 9)
   
    def test_str(self):
        """Usage str should print like equivalent list"""
        u = self.abUsage()
        self.assertEqual(str(u), "[('a', 0.0), ('b', 0.0)]")

        u = self.abUsage([1,2.0])
        self.assertEqual(str(u), \
            "[('a', 1.0), ('b', 2.0)]")

    def test_iter(self):
        """Usage iter should iterate over keys"""
        u = self.abUsage([1,2])
        x = tuple(u)
        self.assertEqual(x, ('a', 'b'))
        #should be able to convert to dict via iter
        d = dict(u)
        self.assertEqual(dict(u), {'a':1,'b':2})

    def test_cmp(self):
        """Usage cmp should work as expected"""
        a = self.abUsage([3,4])
        b = self.abUsage([3,2])
        c = self.abUsage([3,4])

        self.assertEqual(a, a)
        self.assertNotEqual(a,b)
        self.assertEqual(a,c)

        self.assertEqual(a==a, True)
        self.assertEqual(a!=a, False)
        self.assertEqual(a==b, False)
        self.assertEqual(a!=b, True)
        self.assertEqual(a==c, True)
        self.assertEqual(a!=c, False)
        self.assertEqual(a==3, False)
        self.assertEqual(a!=3, True)

    def test_add(self):
        """Usage add should add two sets of counts together"""
        u, v = self.abUsage([1,2]), self.abUsage([6,4])
        x = self.abUsage([7,6])
        y = self.abUsage([7,6])
        self.assertEqual(x, y)
        self.assertEqual(x, u+v)
        self.assertEqual(u + v, self.abUsage([7,6]))

    def test_sub(self):
        """Usage sub should subtract one set of counts from the other"""
        u, v = self.abUsage([1,2]), self.abUsage([6,4])
        self.assertEqual(v-u, self.abUsage([5,2]))

    def test_mul(self):
        """Usage mul should multiply usage by a scalar"""
        u = self.abUsage([0,4])
        self.assertEqual(u*3, self.abUsage([0,12]))

    def test_div(self):
        """Usage div should divide usage by scalar (unsafely)"""
        u = self.abUsage([0,4])
        self.assertEqual(u/2, self.abUsage([0,2]))
        self.assertEqual(u/8, self.abUsage([0.0,0.5]))
        #note: don't need to divide by floating point to get fractions
        self.assertEqual(u/8.0, self.abUsage([0.0,0.5]))
    
    def test_scale_sum(self):
        """Usage scale_sum should scale usage to specified sum"""
        u = self.abUsage([1,3])
        self.assertEqual(u.scale_sum(12), self.abUsage([3.0, 9.0]))
        self.assertEqual(u.scale_sum(1), self.abUsage([0.25,0.75]))
        #default is sum to 1
        self.assertEqual(u.scale_sum(), self.abUsage([0.25,0.75]))
    
    def test_scale_max(self):
        """Usage scale_max should scale usage to specified max"""
        u = self.abUsage([1,3])
        self.assertEqual(u.scale_max(12), self.abUsage([4.0, 12.0]))
        self.assertEqual(u.scale_max(1), self.abUsage([1/3.0,1.0]))
        #default is max to 1
        self.assertEqual(u.scale_max(), self.abUsage([1/3.0,1.0]))
    
    def test_probs(self):
        """Usage probs should scale usage to sum to 1"""
        u = self.abUsage([1,3])
        self.assertEqual(u.probs(), self.abUsage([0.25,0.75]))

    def test_randomIndices(self):
        """Usage randomIndices should return correct sequence."""
        d = DnaUsage([0.25, 0.5, 0.1, 0.15])
        s = d.randomIndices(7, [0, 0.49, 1, 0.74, 0.76, 0.86, 0.2])
        self.assertEqual(s, array([0,1,3,1,2,3,0]))

        s = d.randomIndices(10000)
        u, c, a, g = [asarray(s==i, 'int32') for i in [0,1,2,3]]
        assert 2300 < sum(u) < 2700
        assert 4800 < sum(c) < 5200
        assert 800 < sum(a) < 1200
        assert 1300 < sum(g) < 1700
    
    def test_fromSeqData(self):
        """Usage fromSeqData should construct from a sequence object w/ data"""
        class o(object): pass
        s = o()
        s._data = array([0,0,0,1])
        self.assertEqual(self.abUsage.fromSeqData(s), self.abUsage([3,1]))
    
    def test_fromArray(self):
        """Usage fromArray should construct from array holding seq of indices"""
        s = array([0,0,0,1])
        self.assertEqual(self.abUsage.fromArray(s), self.abUsage([3,1]))

    def test_get(self):
        """Usage get should behave like dict"""
        u = self.abUsage([3,4])
        self.assertEqual(u.get('a', 5), 3)
        self.assertEqual(u.get('b', 5), 4)
        self.assertEqual(u.get('x', 5), 5)

    def test_values(self):
        """Usage values should return list of values in alphabet order"""
        u = self.abUsage([3,4])
        self.assertEqual(u.values(), [3,4])

    def test_keys(self):
        """Usage keys should return list of symbols in alphabet order"""
        u = self.abUsage([3,4])
        self.assertEqual(u.keys(), ['a','b'])

    def test_items(self):
        """Usage items should return list of key-value pairs"""
        u = self.abUsage([3,4])
        self.assertEqual(u.items(), [('a',3),('b',4)])

    def test_entropy(self):
        """Usage items should calculate their Shannon entropy"""
        #two equal choices implies one bit of entropy
        u = RnaUsage([1,1,0,0])
        self.assertEqual(u.entropy(), 1)
        u = RnaUsage([10,10,0,0])
        self.assertEqual(u.entropy(), 1)
        #four equal choices implies two bits
        u = RnaUsage([3,3,3,3])
        self.assertEqual(u.entropy(), 2)
        #only one choice -> no entropy
        u = RnaUsage([3,0,0,0])
        self.assertEqual(u.entropy(), 0)
        #empty usage also has no entropy
        u = RnaUsage([0,0,0,0])
        self.assertEqual(u.entropy(), 0)
        #calculated this one by hand
        u = RnaUsage([.5,.3,.1,.1])
        self.assertFloatEqual(u.entropy(),1.6854752972273346) 

class PairMatrixTests(TestCase):
    """Tests of the PairMatrix base class."""
    def setUp(self):
        """Define standard alphabet and matrices for tests."""
        self.ab = Alphabet('ab')
        self.ab_pairs = self.ab*self.ab
        self.empty = PairMatrix([0,0,0,0], self.ab_pairs)
        self.named = PairMatrix([[1,2],[3,4]], self.ab_pairs, 'name')
        
    def test_init(self):
        """PairMatrix init requires data and alphabet"""
        #should only care about number of elements, not shape
        p = PairMatrix([1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8], RnaPairs)
        assert p.Alphabet is RnaPairs
        self.assertEqual(len(p._data), 4)
        self.assertEqual(len(p._data.flat), 16)
        self.assertEqual(p._data[0], array([1,2,3,4]))
        self.assertEqual(p._data[1], array([5,6,7,8]))

    def test_init_bad(self):
        """PairMatrix init should fail if data wrong length"""
        self.assertRaises(ValueError, PairMatrix, [1,2,3,4], RnaPairs)
        #should also require alphabet
        self.assertRaises(TypeError, PairMatrix, [1,2,3,4])

    def test_toMatlab(self):
        """PairMatrix toMatlab should return correct format string"""
        self.assertEqual(self.empty.toMatlab(), "m=[0.0 0.0;\n0.0 0.0];\n")

        self.assertEqual(self.named.toMatlab(), \
        "name=[1.0 2.0;\n3.0 4.0];\n")

    def test_str(self):
        """PairMatrix __str__ should return string correpsonding to data"""
        self.assertEqual(str(self.named), str(self.named._data))

    def test_repr(self):
        """PairMatrix __repr__ should return reconstructable string"""
        self.assertEqual(repr(self.named), \
            'PairMatrix('+ repr(self.named._data) + ',' +\
            repr(self.ab_pairs)+",'name')")

    def test_getitem(self):
        """PairMatrix __getitem__ should translate indices and get from array"""
        n = self.named
        self.assertEqual(n['a'], array([1,2]))
        self.assertEqual(n['b'], array([3,4]))
        self.assertEqual(n['a','a'], 1)
        self.assertEqual(n['a','b'], 2)
        self.assertEqual(n['b','a'], 3)
        self.assertEqual(n['b','b'], 4)

        #WARNING: m[a][b] doesn't work b/c indices not translated!
        #must access as m[a,b] instead.
        try:
            x = n['a']['b']
        except ValueError:
            pass

        #should work even if SubAlphabets not the same
        a = Alphabet('ab')
        x = Alphabet('xyz')
        j = a * x
        m = PairMatrix([1,2,3,4,5,6], j)
        self.assertEqual(m['a','x'], 1)
        self.assertEqual(m['a','y'], 2)
        self.assertEqual(m['a','z'], 3)
        self.assertEqual(m['b','x'], 4)
        self.assertEqual(m['b','y'], 5)
        self.assertEqual(m['b','z'], 6)

        #should work even if SubAlphabets are different types
        a = Alphabet([1,2,3])
        b = Alphabet(['abc', 'xyz'])
        j = a * b
        m = PairMatrix([1,2,3,4,5,6], j)
        self.assertEqual(m[1,'abc'], 1)
        self.assertEqual(m[1,'xyz'], 2)
        self.assertEqual(m[2,'abc'], 3)
        self.assertEqual(m[2,'xyz'], 4)
        self.assertEqual(m[3,'abc'], 5)
        self.assertEqual(m[3,'xyz'], 6)
        self.assertEqual(list(m[2]), [3,4])
        #gives KeyError if single item not present in first level
        self.assertRaises(KeyError, m.__getitem__, 'x')

    def test_empty(self):
        """PairMatrix empty classmethod should produce correct class"""
        p = PairMatrix.empty(self.ab_pairs)
        self.assertEqual(p._data.flat, array([0,0,0,0]))
        self.assertEqual(p._data, array([[0,0],[0,0]]))
        self.assertEqual(p._data.shape, (2,2))

    def test_eq(self):
        """Pairmatrix test for equality should check all elements"""
        p = self.ab_pairs
        a = PairMatrix.empty(p)
        b = PairMatrix.empty(p)
        assert a is not b
        self.assertEqual(a, b)
        c = PairMatrix([1,2,3,4], p)
        d = PairMatrix([1,2,3,4], p)
        assert c is not d
        self.assertEqual(c, d)
        self.assertNotEqual(a, c)
        #Note: still compare equal if alphabets are different
        x = Alphabet('xy')
        x = x*x
        y = PairMatrix([1,2,3,4], x)
        self.assertEqual(y, c)
        #should check all elements, not just first
        c = PairMatrix([1,1,1,1], p)
        d = PairMatrix([1,1,1,4], p)
        assert c is not d
        self.assertNotEqual(c, d)

    def test_ne(self):
        """PairMatrix test for inequality should check all elements"""
        p = self.ab_pairs
        a = PairMatrix.empty(p)
        b = PairMatrix.empty(p)
        c = PairMatrix([1,2,3,4], p)
        d = PairMatrix([1,2,3,4], p)
        assert a != c
        assert a == b
        assert c == d
        
        #Note: still compare equal if alphabets are different
        x = Alphabet('xy')
        x = x*x
        y = PairMatrix([1,2,3,4], x)
        assert y == c
        #should check all elements, not just first
        c = PairMatrix([1,1,1,1], p)
        d = PairMatrix([1,1,1,4], p)
        assert c != d

    def test_iter(self):
        """PairMatrix __iter__ should iterate over rows."""
        p = self.ab_pairs
        c = PairMatrix([1,2,3,4], p)
        l = list(c)
        self.assertEqual(len(l), 2)
        self.assertEqual(list(l[0]), [1,2])
        self.assertEqual(list(l[1]), [3,4])

    def test_len(self):
        """PairMatrix __len__ should return number of rows"""
        p = self.ab_pairs
        c = PairMatrix([1,2,3,4], p)
        self.assertEqual(len(c), 2)
        

class CountsTests(TestCase):
    """Tests of the Counts class, including inferring counts from sequences."""

    def test_toProbs(self):
        """Counts toProbs should return valid prob matrix."""
        c = Counts([1,2,3,4,2,2,2,2,0.2,0.4,0.6,0.8,1,0,0,0], RnaPairs)
        p = c.toProbs()
        assert isinstance(p, Probs)
        self.assertEqual(p, Probs([0.1,0.2,0.3,0.4,0.25,0.25,0.25,0.25, \
            0.1,0.2,0.3,0.4,1.0,0.0,0.0,0.0], RnaPairs))
        self.assertEqual(p['U','U'], 0.1)
        self.assertEqual(p['G','U'], 1.0)
        self.assertEqual(p['G','G'], 0.0)
        
    
    def test_fromPair(self):
        """Counts fromPair should return correct counts."""
        s = Counts.fromPair( RnaSequence('UCCGAUCGAUUAUCGGGUACGUA'), \
                             RnaSequence('GUCGAGUAUAGCGUACGGCUACG'),
                             RnaPairs)
        
        assert isinstance(s, Counts)

        vals = [
            ('U','U',0),('U','C',2.5),('U','A',1),('U','G',2.5),
            ('C','U',2.5),('C','C',1),('C','A',1),('C','G',0.5),
            ('A','U',1),('A','C',1),('A','A',1),('A','G',2),
            ('G','U',2.5),('G','C',0.5),('G','A',2),('G','G',2),
        ]
        for i, j, val in vals:
            self.assertFloatEqual(s[i,j], val)
        #check that it works for big seqs
        s = Counts.fromPair( RnaSequence('UCAG'*1000), \
                             RnaSequence('UGAG'*1000),
                             RnaPairs)
        
        assert isinstance(s, Counts)

        vals = [
            ('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
            ('C','U',0),('C','C',0),('C','A',0),('C','G',500),
            ('A','U',0),('A','C',0),('A','A',1000),('A','G',0),
            ('G','U',0),('G','C',500),('G','A',0),('G','G',1000),
        ]
        for i, j, val in vals:
            self.assertFloatEqual(s[i,j], val)

        #check that it works for codon seqs
        s1 = ModelRnaCodonSequence('UUCGCG')
        s2 = ModelRnaCodonSequence('UUUGGG')
        c = Counts.fromPair(s1, s2, RNA.Alphabet.Triples**2)
        self.assertEqual(c._data.sum(), 2)
        self.assertEqual(c._data[0,1], 0.5)
        self.assertEqual(c._data[1,0], 0.5)
        self.assertEqual(c._data[55,63], 0.5)
        self.assertEqual(c._data[63,55], 0.5)


    def test_fromTriple(self):
        """Counts fromTriple should return correct counts."""
        cft = Counts.fromTriple
        rs = RnaSequence
        A, C, G, U = map(rs, 'ACGU')
        #counts if different from both the other groups
        s = cft(A, C, C, RnaPairs)
        assert isinstance(s, Counts)
        self.assertEqual(s['C','A'], 1)
        self.assertEqual(s['A','C'], 0)
        self.assertEqual(s['C','C'], 0)
        #try it with longer sequences
        AAA, CCC = map(rs, ['AAA', 'CCC'])
        s = cft(AAA, CCC, CCC, RnaPairs)
        self.assertEqual(s['C','A'], 3)
        self.assertEqual(s['A','C'], 0)
        #doesn't count if all three differ
        ACG, CGA, GAC = map(rs, ['ACG','CGA','GAC'])
        s = cft(ACG, CGA, GAC, RnaPairs)
        self.assertEqual(s['C','A'], 0)
        self.assertEqual(s['A','C'], 0)
        
        self.assertEqual(s, Counts.empty(RnaPairs))
        #counts as no change if same as other sequence...
        s = cft(AAA, AAA, CCC, RnaPairs)
        self.assertEqual(s['A','A'], 3)
        self.assertEqual(s['A','C'], 0)
        #...or same as the outgroup
        s = cft(AAA, CCC, AAA, RnaPairs)
        self.assertEqual(s['A','A'], 3)
        self.assertEqual(s['A','C'], 0)
        #spot-check a mixed example
        s = cft( \
            rs('AUCGCUAGCAUACGUCA'),
            rs('AAGCUGCGUAGCGCAUA'),
            rs('GCGCAUAUGACGAUAGC'),
            RnaPairs
        )
        vals = [
            ('U','U',1),('U','C',0),('U','A',0),('U','G',0),
            ('C','U',0),('C','C',0),('C','A',0),('C','G',1),
            ('A','U',1),('A','C',0),('A','A',4),('A','G',0),
            ('G','U',0),('G','C',1),('G','A',0),('G','G',1),
        ]
        for i, j, val in vals:
            self.assertFloatEqual(s[i,j], val)
        #check a long sequence
        s = cft( \
            rs('AUCGCUAGCAUACGUCA'*1000),
            rs('AAGCUGCGUAGCGCAUA'*1000),
            rs('GCGCAUAUGACGAUAGC'*1000),
            RnaPairs
        )
        vals = [
            ('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
            ('C','U',0),('C','C',0),('C','A',0),('C','G',1000),
            ('A','U',1000),('A','C',0),('A','A',4000),('A','G',0),
            ('G','U',0),('G','C',1000),('G','A',0),('G','G',1000),
        ]
        for i, j, val in vals:
            self.assertFloatEqual(s[i,j], val)

        #check that it works when forced to use both variants of fromTriple
        s = cft( \
            rs('AUCGCUAGCAUACGUCA'*1000),
            rs('AAGCUGCGUAGCGCAUA'*1000),
            rs('GCGCAUAUGACGAUAGC'*1000),
            RnaPairs,
            threshold=0 #forces "large" method
        )
        vals = [
            ('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
            ('C','U',0),('C','C',0),('C','A',0),('C','G',1000),
            ('A','U',1000),('A','C',0),('A','A',4000),('A','G',0),
            ('G','U',0),('G','C',1000),('G','A',0),('G','G',1000),
        ]
        for i, j, val in vals:
            self.assertFloatEqual(s[i,j], val)
        
        s = cft( \
            rs('AUCGCUAGCAUACGUCA'*1000),
            rs('AAGCUGCGUAGCGCAUA'*1000),
            rs('GCGCAUAUGACGAUAGC'*1000),
            RnaPairs,
            threshold=1e12 #forces "small" method
        )
        vals = [
            ('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
            ('C','U',0),('C','C',0),('C','A',0),('C','G',1000),
            ('A','U',1000),('A','C',0),('A','A',4000),('A','G',0),
            ('G','U',0),('G','C',1000),('G','A',0),('G','G',1000),
        ]
        for i, j, val in vals:
            self.assertFloatEqual(s[i,j], val)


        #check that it works for codon seqs
        s1 = ModelRnaCodonSequence('UUCGCG')
        s2 = ModelRnaCodonSequence('UUUGGG')
        s3 = s2
        c = Counts.fromTriple(s1, s2, s3, RNA.Alphabet.Triples**2)
        self.assertEqual(c._data.sum(), 2)
        self.assertEqual(c._data[0,1], 1)
        self.assertEqual(c._data[63,55], 1)

        
class ProbsTests(TestCase):
    """Tests of the Probs class."""
    def setUp(self):
        """Define an alphabet and some probs."""
        self.ab = Alphabet('ab')
        self.ab_pairs = self.ab**2
        
    def test_isValid(self):
        """Probs isValid should return True if it's a prob matrix"""
        a = self.ab_pairs
        m = Probs([0.5,0.5,1,0], a)
        self.assertEqual(m.isValid(), True)
        #fails if don't sum to 1
        m = Probs([0.5, 0, 1, 0], a)
        self.assertEqual(m.isValid(), False)
        #fails if negative elements
        m = Probs([1, -1, 0, 1], a)
        self.assertEqual(m.isValid(), False)

    def test_makeModel(self):
        """Probs makeModel should return correct substitution pattern"""
        a = Alphabet('abc')**2
        m = Probs([0.5,0.25,0.25,0.1,0.8,0.1,0.3,0.6,0.1], a)
        obs = m.makeModel(array([0,1,1,0,2,2]))
        exp = array([[0.5,0.25,0.25],[0.1,0.8,0.1],[0.1,0.8,0.1],\
            [0.5,0.25,0.25],[0.3,0.6,0.1],[0.3,0.6,0.1]])
        self.assertEqual(obs, exp)

    def test_mutate(self):
        """Probs mutate should return correct vector from input vector"""
        a = Alphabet('abc')**2
        m = Probs([0.5,0.25,0.25,0.1,0.8,0.1,0.3,0.6,0.1], a)
        #because of fp math in accumulate, can't predict boundaries exactly
        #so add/subtract eps to get the result we expect
        eps = 1e-6
        #            a b b a c c a b c
        seq = array([0,1,1,0,2,2,0,1,2])
        random_vec = array([0,.01,.8-eps,1,1,.3,.05,.9+eps,.95])
        self.assertEqual(m.mutate(seq, random_vec), \
            #      a a b c c a a c c
            array([0,0,1,2,2,0,0,2,2]))
        #check that freq. distribution is about right
        seqs = array([m.mutate(seq) for i in range(1000)])
        #WARNING: bool operators return byte arrays, whose sums wrap at 256!
        zero_count = asarray(seqs == 0, 'int32')
        sums = sum(zero_count, axis=0)
        #expect: 500, 100, 100, 500, 300, 300, 500, 100, 300
        #std dev = sqrt(npq), which is sqrt(250), sqrt(90), sqrt(210)
        means = array([500, 100, 100, 500, 300, 300, 500, 100, 300])
        var   = array([250, 90, 90,  250, 210, 210, 250, 90, 210])
        three_sd = 3 * sqrt(var)
        for obs, exp, sd in zip(sums, means, three_sd):
            assert exp - 2*sd < obs < exp + 2*sd

    def test_toCounts(self):
        """Probs toCounts should return counts object w/ right numbers"""
        a = Alphabet('abc')**2
        m = Probs([0.5,0.25,0.25,0.1,0.8,0.1,0.3,0.6,0.1], a)
        obs = m.toCounts(30)
        assert isinstance(obs, Counts)
        exp = Counts([[5.,2.5,2.5,1,8,1,3,6,1]], a)
        self.assertEqual(obs, exp)

    def test_toRates(self):
        """Probs toRates should return log of probs, optionally normalized"""
        a = Alphabet('abc')**2
        p = Probs([0.9,0.05,0.05,0.1,0.85,0.05,0.02,0.02,0.96], a)
        assert p.isValid()
        r = p.toRates()
        assert isinstance(r, Rates)
        assert r.isValid()
        assert not r.isComplex()
        self.assertEqual(r._data, logm(p._data))
        r_norm = p.toRates(normalize=True)
        self.assertFloatEqual(trace(r_norm._data), -1.0)

    def test_random_p_matrix(self):
        """Probs random should return random Probsrows that sum to 1"""
        for i in range(NUM_TESTS):
            p = Probs.random(RnaPairs)._data
            for i in p:
                self.assertFloatEqual(sum(i), 1.0)
            #length should be 4 by default
            self.assertEqual(len(p), 4)
            self.assertEqual(len(p[0]), 4)
            
    def test_random_p_matrix_diag(self):
        """Probs random should work with a scalar diagonal"""
        #if diagonal is 1, off-diagonal elements should be 0
        for i in range(NUM_TESTS):
            p = Probs.random(RnaPairs, 1)._data
            self.assertEqual(p, identity(4, 'd'))
        #if diagonal is between 0 and 1, rows should sum to 1
        for i in range(NUM_TESTS):
            p = Probs.random(RnaPairs, 0.5)._data
            for i in range(4):
                self.assertFloatEqual(sum(p[i]), 1.0)
                self.assertEqual(p[i][i], 0.5)
                assert min(p[i]) >= 0
                assert max(p[i]) <= 1
        #if diagonal > 1, rows should still sum to 1
        for i in range(NUM_TESTS):
            p = Probs.random(RnaPairs, 2)._data
            for i in range(4):
                self.assertEqual(p[i][i], 2.0)
                self.assertFloatEqual(sum(p[i]), 1.0)
                assert min(p[i]) < 0

    def test_random_p_matrix_diag_vector(self):
        """Probs random should work with a vector diagonal"""
        for i in range(NUM_TESTS):
            diag = [0, 0.2, 0.6, 1.0]
            p = Probs.random(RnaPairs, diag)._data
            for i, d, row in zip(range(4), diag, p):
                self.assertFloatEqual(sum(row), 1.0)
                self.assertEqual(row[i], diag[i])

class RatesTests(TestCase):
    """Tests of the Rates class."""
    def setUp(self):
        """Define standard alphabets."""
        self.abc = Alphabet('abc')
        self.abc_pairs = self.abc**2
        
    def test_init(self):
        """Rates init should take additional parameter to normalize"""
        r = Rates([-2,1,1,0,-1,1,0,0,0], self.abc_pairs)
        self.assertEqual(r._data, array([[-2,1,1],[0,-1,1],[0,0,0]]))
       
        r = Rates([-2.5,1,1,0,-1,1,0,0,0], self.abc_pairs)
        self.assertEqual(r._data, array([[-2.5,1.,1.],[0.,-1.,1.],[0.,0.,0.]]))
       
        r = Rates([-2,1,1,0,-1,1,2,0,-1], self.abc_pairs, normalize=True)
        self.assertEqual(r._data, \
            array([[-0.5,.25,.25],[0.,-.25,.25],[.5,0.,-.25]]))

    def test_isComplex(self):
        """Rates isComplex should return True if complex elements"""
        r = Rates([0,0,0.1j,0,0,0,0,0,0], self.abc_pairs)
        assert r.isComplex()
        
        r = Rates([0,0,0.1,0,0,0,0,0,0], self.abc_pairs)
        assert not r.isComplex()

    def test_isSignificantlyComplex(self):
        """Rates isSignificantlyComplex should be true if large imag component"""
        r = Rates([0,0,0.2j,0,0,0,0,0,0], self.abc_pairs)
        assert r.isSignificantlyComplex()
        assert r.isSignificantlyComplex(0.01)
        assert not r.isSignificantlyComplex(0.2)
        assert not r.isSignificantlyComplex(0.3)
        
        r = Rates([0,0,0.1,0,0,0,0,0,0], self.abc_pairs)
        assert not r.isSignificantlyComplex()
        assert not r.isSignificantlyComplex(1e-30)
        assert not r.isSignificantlyComplex(1e3)
        
    def test_isValid(self):
        """Rates isValid should check row sums and neg off-diags"""
        r = Rates([-2,1,1,0,-1,1,0,0,0], self.abc_pairs)
        assert r.isValid()

        r = Rates([0,0,0,0,0,0,0,0,0], self.abc_pairs)
        assert r.isValid()
        #not valid if negative off-diagonal
        r = Rates([-2,-1,3,1,-1,0,2,2,-4], self.abc_pairs)
        assert not r.isValid()
        #not valid if rows don't all sum to 0
        r = Rates([0,0.0001,0,0,0,0,0,0,0], self.abc_pairs)
        assert not r.isValid()

    def test_normalize(self):
        """Rates normalize should return normalized copy of self where trace=-1"""
        r = Rates([-2,1,1,0,-1,1,2,0,-1], self.abc_pairs)
        n = r.normalize()
        self.assertEqual(n._data, \
            array([[-0.5,.25,.25],[0.,-.25,.25],[.5,0.,-.25]]))
        #check that we didn't change the original
        assert n._data is not r._data
        self.assertEqual(r._data, \
            array([[-2,1,1,],[0,-1,1,],[2,0,-1]]))

    def test_toProbs(self):
        """Rates toProbs should return correct probability matrix"""
        a = self.abc_pairs
        p = Probs([0.75, 0.1, 0.15, 0.2, 0.7, 0.1, 0.05, 0.1, 0.85], a)
        q = p.toRates()
        self.assertEqual(q._data, logm(p._data))
        p2 = q.toProbs()
        self.assertFloatEqual(p2._data, p._data)
        
        #test a case that didn't work for DNA
        q = Rates(array(
            [[-0.64098451,  0.0217681 ,  0.35576469,  0.26345171],
             [ 0.31144238, -0.90915091,  0.25825858,  0.33944995],
             [ 0.01578521,  0.43162879, -0.99257581,  0.54516182],
             [ 0.13229986,  0.04027147,  0.05817791, -0.23074925]]),
            DnaPairs)
        self.assertFloatEqual(q.toProbs(0.5)._data, expm(q._data)(t=0.5))

    def test_timeForSimilarity(self):
        """Rates timeToSimilarity should return correct time"""
        a = self.abc_pairs
        p = Probs([0.75, 0.1, 0.15, 0.2, 0.7, 0.1, 0.05, 0.15, 0.8], a)
        q = p.toRates()
        d = 0.5
        t = q.timeForSimilarity(d)
        x = expm(q._data)(t)
        self.assertFloatEqual(average(diagonal(x), axis=0), d)
        t = q.timeForSimilarity(d, array([1/3.0]*3))
        x = expm(q._data)(t)
        self.assertFloatEqual(average(diagonal(x), axis=0), d)
        self.assertEqual(q.timeForSimilarity(1), 0)

    def test_toSimilarProbs(self):
        """Rates toSimilarProbs should match individual steps"""
        a = self.abc_pairs
        p = Probs([0.75, 0.1, 0.15, 0.2, 0.7, 0.1, 0.05, 0.15, 0.8], a)
        q = p.toRates()
        self.assertEqual(q.toSimilarProbs(0.5), \
            q.toProbs(q.timeForSimilarity(0.5)))

        #test a case that didn't work for DNA
        q = Rates(array(
            [[-0.64098451,  0.0217681 ,  0.35576469,  0.26345171],
             [ 0.31144238, -0.90915091,  0.25825858,  0.33944995],
             [ 0.01578521,  0.43162879, -0.99257581,  0.54516182],
             [ 0.13229986,  0.04027147,  0.05817791, -0.23074925]]),
            DnaPairs)
        p = q.toSimilarProbs(0.66)
        self.assertFloatEqual(average(diagonal(p._data), axis=0), 0.66)

    def test_random_q_matrix(self):
        """Rates random should return matrix of correct size"""
        for i in range(NUM_TESTS):
            q = Rates.random(RnaPairs)._data
            self.assertEqual(len(q), 4)
            self.assertEqual(len(q[0]), 4)
            for row in q:
                self.assertFloatEqual(sum(row), 0.0)
                assert min(row) < 0
                assert max(row) > 0
                l = list(row)
                l.sort()
                assert min(l[1:]) >= 0
                assert max(l[1:]) <= 1

    def test_random_q_matrix_diag(self):
        """Rates random should set diagonal correctly from scalar"""
        for i in range(NUM_TESTS):
            q = Rates.random(RnaPairs, -1)._data
            self.assertEqual(len(q), 4)
            for i, row in enumerate(q):
                self.assertFloatEqual(sum(row), 0)
                self.assertEqual(row[i], -1)
                assert max(row) <= 1
                l = list(row)
                l.sort()
                assert min(l[1:]) >= 0
                assert max(l[1:]) <= 1
        for i in range(NUM_TESTS):
            q = Rates.random(RnaPairs, -5)._data
            self.assertEqual(len(q), 4)
            for i, row in enumerate(q):
                self.assertFloatEqual(sum(row), 0)
                self.assertEqual(row[i], -5)
                assert max(row) <= 5
                l = list(row)
                l.sort()
                assert min(l[1:]) >= 0
                assert max(l[1:]) <= 5

    def test_random_q_matrix_diag_vector(self):
        """Rates random should init with vector as diagonal"""
        diag = [1, -1, 2, -2]
        for i in range(NUM_TESTS):
            q = Rates.random(RnaPairs, diag)._data
            for i, d, row in zip(range(4), diag, q):
                self.assertFloatEqual(sum(row, axis=0), 0.0)
                self.assertEqual(row[i], diag[i])

    def test_fixNegsDiag(self):
        """Rates fixNegsDiag should fix negatives by adding to diagonal"""
        q = Rates([[-6,2,2,2],[-6,-2,4,4],[2,2,-6,2],[4,4,-2,-6]], RnaPairs)
        m = q.fixNegsDiag()._data
        self.assertEqual(m,array([[-6,2,2,2],[0,-8,4,4],[2,2,-6,2],[4,4,0,-8]]))

    def test_fixNegsEven(self):
        """Rates fixNegsEven should fix negatives by adding evenly to others"""
        q = Rates([[-6,2,2,2],[-3,-2,3,2],[-2,-2,-6,2],[4,4,-6,-2]], RnaPairs)
        m = q.fixNegsEven()._data
        self.assertEqual(m,array([[-6,2,2,2],[0,-3,2,1],[0,0,-0,0],[2,2,0,-4]]))

    def test_fixNegsFmin(self):
        """Rates fixNegsFmin should fix negatives using fmin method"""
        q = Rates(array([[-0.28936029,  0.14543346, -0.02648614,  0.17041297],
            [ 0.00949624, -0.31186005,  0.17313171,  0.1292321 ],
            [ 0.10443209,  0.16134479, -0.30480186,  0.03902498],
            [ 0.01611264,  0.12999161,  0.15558259, -0.30168684]]), DnaPairs)
        r = q.fixNegsFmin()
        assert not q.isValid()
        assert r.isValid()

    def test_fixNegsConstrainedOpt(self):
        """Rates fixNegsConstrainedOpt should fix negatives w/ constrained opt"""
        q = Rates(array([[-0.28936029,  0.14543346, -0.02648614,  0.17041297],
            [ 0.00949624, -0.31186005,  0.17313171,  0.1292321 ],
            [ 0.10443209,  0.16134479, -0.30480186,  0.03902498],
            [ 0.01611264,  0.12999161,  0.15558259, -0.30168684]]), DnaPairs)
        r = q.fixNegsFmin()
        assert not q.isValid()
        assert r.isValid()

    def test_fixNegsReflect(self):
        """Rates fixNegsReflect should reflect negatives across diagonal"""
        ab = Alphabet('ab')**2
        #should leave matrix alone if no off-diagonal elements
        q = Rates([0,0,1,-1], ab)
        self.assertEqual(q.fixNegsReflect()._data, array([[0,0],[1,-1]]))
        q = Rates([-2,2,1,-1], ab)
        self.assertEqual(q.fixNegsReflect()._data, array([[-2,2],[1,-1]]))
        #should work if precisely one off-diag element in a pair is negative
        q = Rates([2,-2,1,-1], ab)
        self.assertEqual(q.fixNegsReflect()._data, array([[0,0],[3,-3]]))
        q = Rates([-1,1,-2,2], ab)
        self.assertEqual(q.fixNegsReflect()._data, array([[-3,3],[0,-0]]))
        #should work if both off-diag elements in a pair are negative
        q = Rates([1,-1,-2,2], ab)
        self.assertEqual(q.fixNegsReflect()._data, array([[-2,2],[1,-1]]))
        q = Rates([2,-2,-1,1], ab)
        self.assertEqual(q.fixNegsReflect()._data, array([[-1,1],[2,-2]]))
        
        q = Rates([[ 0,  3, -2, -1],
                   [ 2, -1,  2, -3],
                   [-1, -1,  2,  0],
                   [-3,  2,  0,  1]], RnaPairs)
        q2 = q.fixNegsReflect()
        self.assertEqual(q2._data, \
            array([[-7,  3,  1,  3],
                   [ 2, -5,  3,  0],
                   [ 2,  0, -2,  0],
                   [ 1,  5,  0, -6]]))

class GoldmanTests(TestCase):
    def setUp(self):
        pass

    def test_goldman_q_dna_pair(self):
        """Should return expected rate matrix"""
        seq1 = "ATGCATGCATGC"
        seq2 = "AAATTTGGGCCC"

        expected = array([[-(2/3.0), (1/3.0), (1/3.0), 0],
                          [(1/3.0), -(2/3.0), 0, (1/3.0)],
                          [(1/3.0), 0, -(2/3.0), (1/3.0)],
                          [0, (1/3.0), (1/3.0), -(2/3.0)]])
        observed = goldman_q_dna_pair(seq1, seq2)
        self.assertFloatEqual(observed, expected)

    def test_goldman_q_rna_pair(self):
        """Should return expected rate matrix"""
        seq1 = "AUGCAUGCAUGC"
        seq2 = "AAAUUUGGGCCC"

        expected = array([[-(2/3.0), (1/3.0), (1/3.0), 0],
                          [(1/3.0), -(2/3.0), 0, (1/3.0)],
                          [(1/3.0), 0, -(2/3.0), (1/3.0)],
                          [0, (1/3.0), (1/3.0), -(2/3.0)]])
        observed = goldman_q_rna_pair(seq1, seq2)
        self.assertFloatEqual(observed, expected)

    def test_goldman_q_dna_triple(self):
        """Should return expected rate matrix"""
        seq1 = "ATGCATGCATGC"
        seq2 = "AAATTTGGGCCC"
        outgroup = "AATTGGCCAATT"

        expected = array([[-(1/2.0), (1/2.0), 0, 0],
                          [0, 0, 0, 0],
                          [(1/3.0), 0, -(1/3.0), 0],
                          [0, 0, 0, 0]])
        observed = goldman_q_dna_triple(seq1, seq2, outgroup)
        self.assertFloatEqual(observed, expected)

    def test_goldman_q_rna_triple(self):
        """Should return expected rate matrix"""
        seq1 = "AUGCAUGCAUGC"
        seq2 = "AAAUUUGGGCCC"
        outgroup = "AAUUGGCCAAUU"

        expected = array([[-(1/2.0), (1/2.0), 0, 0],
                          [0, 0, 0, 0],
                          [(1/3.0), 0, -(1/3.0), 0],
                          [0, 0, 0, 0]])
        observed = goldman_q_rna_triple(seq1, seq2, outgroup)
        self.assertFloatEqual(observed, expected)

if __name__ == "__main__":
    main()