File: fit_function.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (63 lines) | stat: -rw-r--r-- 1,801 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
""" fitting funtions
     
module to fit x and y samples to a model

"""
from __future__ import division
from numpy import array
from cogent.maths.scipy_optimize import fmin

__author__ = "Antonio Gonzalez Pena"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Antonio Gonzalez Pena"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Antonio Gonzalez Pena"
__email__ = "antgonza@gmail.com"
__status__ = "Prototype"

def fit_function(x_vals, y_vals, func, n_params, iterations=2):
   """ Fit any function to any array of values of x and y.
   :Parameters:
       x_vals : array
           Values for x to fit the function func.
       y_vals : array
           Values for y to fit the function func.
       func : callable ``f(x, a)``
           Objective function (model) to be fitted to the data. This function 
           should return either an array for models that are not a constant, 
           i.e. f(x)=exp(a[0]+x*a[1]), or a single value for models that are a
           cosntant, i.e. f(x)=a[0]
       n_params : int
           Number of parameters to fit in func
       iterations : int
           Number of iterations to fit func

   :Returns: param_guess

       param_guess : array
           Values for each of the arguments to fit func to x_vals and y_vals

   :Notes:

       Fit a function to a given array of values x and y using simplex to
       minimize the error.

   """

   # internal function to minimize the error
   def f2min(a):
       #sum square deviation
       return ((func(x_vals, a) - y_vals)**2).sum()

   param_guess = array(range(n_params))
   for i in range(iterations):
       xopt = fmin(f2min, param_guess, disp=0)
       param_guess = xopt

   return xopt


#if __name__ == "__main__":
#    main()