1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
|
#!/usr/bin/env python
# We don't want to depend on the monolithic, fortranish,
# Num-overlapping, mac-unfriendly SciPy. But this
# module is too good to pass up. It has been lightly customised for
# use in Cogent. Changes made to fmin_powell and brent: allow custom
# line search function (to allow bound_brent to be passed in), cope with
# infinity, tol specified as an absolute value, not a proportion of f,
# and more info passed out via callback.
# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************
# Minimization routines
__all__ = ['fmin', 'fmin_powell','fmin_bfgs', 'fmin_ncg', 'fmin_cg',
'fminbound','brent', 'golden','bracket','rosen','rosen_der',
'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime',
'line_search', 'check_grad']
__docformat__ = "restructuredtext en"
import numpy
from numpy import atleast_1d, eye, mgrid, argmin, zeros, shape, empty, \
squeeze, vectorize, asarray, absolute, sqrt, Inf, asfarray, isinf
try:
import linesearch # from SciPy
except ImportError:
linesearch = None
# These have been copied from Numeric's MLab.py
# I don't think they made the transition to scipy_core
def max(m,axis=0):
"""max(m,axis=0) returns the maximum of m along dimension axis.
"""
m = asarray(m)
return numpy.maximum.reduce(m,axis)
def min(m,axis=0):
"""min(m,axis=0) returns the minimum of m along dimension axis.
"""
m = asarray(m)
return numpy.minimum.reduce(m,axis)
def is_array_scalar(x):
"""Test whether `x` is either a scalar or an array scalar.
"""
return len(atleast_1d(x) == 1)
abs = absolute
import __builtin__
pymin = __builtin__.min
pymax = __builtin__.max
__version__ = "1.5.3"
_epsilon = sqrt(numpy.finfo(float).eps)
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"
def vecnorm(x, ord=2):
if ord == Inf:
return numpy.amax(abs(x))
elif ord == -Inf:
return numpy.amin(abs(x))
else:
return numpy.sum(abs(x)**ord,axis=0)**(1.0/ord)
def rosen(x): # The Rosenbrock function
x = asarray(x)
return numpy.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0,axis=0)
def rosen_der(x):
x = asarray(x)
xm = x[1:-1]
xm_m1 = x[:-2]
xm_p1 = x[2:]
der = numpy.zeros_like(x)
der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
der[-1] = 200*(x[-1]-x[-2]**2)
return der
def rosen_hess(x):
x = atleast_1d(x)
H = numpy.diag(-400*x[:-1],1) - numpy.diag(400*x[:-1],-1)
diagonal = numpy.zeros(len(x), dtype=x.dtype)
diagonal[0] = 1200*x[0]-400*x[1]+2
diagonal[-1] = 200
diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
H = H + numpy.diag(diagonal)
return H
def rosen_hess_prod(x,p):
x = atleast_1d(x)
Hp = numpy.zeros(len(x), dtype=x.dtype)
Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
-400*x[1:-1]*p[2:]
Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
return Hp
def wrap_function(function, args):
ncalls = [0]
def function_wrapper(x):
ncalls[0] += 1
return function(x, *args)
return ncalls, function_wrapper
def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None,
full_output=0, disp=1, retall=0, callback=None):
"""Minimize a function using the downhill simplex algorithm.
:Parameters:
func : callable func(x,*args)
The objective function to be minimized.
x0 : ndarray
Initial guess.
args : tuple
Extra arguments passed to func, i.e. ``f(x,*args)``.
callback : callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, iter, funcalls, warnflag})
xopt : ndarray
Parameter that minimizes function.
fopt : float
Value of function at minimum: ``fopt = func(xopt)``.
iter : int
Number of iterations performed.
funcalls : int
Number of function calls made.
warnflag : int
1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.
allvecs : list
Solution at each iteration.
*Other Parameters*:
xtol : float
Relative error in xopt acceptable for convergence.
ftol : number
Relative error in func(xopt) acceptable for convergence.
maxiter : int
Maximum number of iterations to perform.
maxfun : number
Maximum number of function evaluations to make.
full_output : bool
Set to True if fval and warnflag outputs are desired.
disp : bool
Set to True to print convergence messages.
retall : bool
Set to True to return list of solutions at each iteration.
:Notes:
Uses a Nelder-Mead simplex algorithm to find the minimum of
function of one or more variables.
"""
fcalls, func = wrap_function(func, args)
x0 = asfarray(x0).flatten()
N = len(x0)
rank = len(x0.shape)
if not -1 < rank < 2:
raise ValueError, "Initial guess must be a scalar or rank-1 sequence."
if maxiter is None:
maxiter = N * 200
if maxfun is None:
maxfun = N * 200
rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
one2np1 = range(1,N+1)
if rank == 0:
sim = numpy.zeros((N+1,), dtype=x0.dtype)
else:
sim = numpy.zeros((N+1,N), dtype=x0.dtype)
fsim = numpy.zeros((N+1,), float)
sim[0] = x0
if retall:
allvecs = [sim[0]]
fsim[0] = func(x0)
nonzdelt = 0.05
zdelt = 0.00025
for k in range(0,N):
y = numpy.array(x0,copy=True)
if y[k] != 0:
y[k] = (1+nonzdelt)*y[k]
else:
y[k] = zdelt
sim[k+1] = y
f = func(y)
fsim[k+1] = f
ind = numpy.argsort(fsim)
fsim = numpy.take(fsim,ind,0)
# sort so sim[0,:] has the lowest function value
sim = numpy.take(sim,ind,0)
iterations = 1
while (fcalls[0] < maxfun and iterations < maxiter):
if (max(numpy.ravel(abs(sim[1:]-sim[0]))) <= xtol \
and max(abs(fsim[0]-fsim[1:])) <= ftol):
break
xbar = numpy.add.reduce(sim[:-1],0) / N
xr = (1+rho)*xbar - rho*sim[-1]
fxr = func(xr)
doshrink = 0
if fxr < fsim[0]:
xe = (1+rho*chi)*xbar - rho*chi*sim[-1]
fxe = func(xe)
if fxe < fxr:
sim[-1] = xe
fsim[-1] = fxe
else:
sim[-1] = xr
fsim[-1] = fxr
else: # fsim[0] <= fxr
if fxr < fsim[-2]:
sim[-1] = xr
fsim[-1] = fxr
else: # fxr >= fsim[-2]
# Perform contraction
if fxr < fsim[-1]:
xc = (1+psi*rho)*xbar - psi*rho*sim[-1]
fxc = func(xc)
if fxc <= fxr:
sim[-1] = xc
fsim[-1] = fxc
else:
doshrink=1
else:
# Perform an inside contraction
xcc = (1-psi)*xbar + psi*sim[-1]
fxcc = func(xcc)
if fxcc < fsim[-1]:
sim[-1] = xcc
fsim[-1] = fxcc
else:
doshrink = 1
if doshrink:
for j in one2np1:
sim[j] = sim[0] + sigma*(sim[j] - sim[0])
fsim[j] = func(sim[j])
ind = numpy.argsort(fsim)
sim = numpy.take(sim,ind,0)
fsim = numpy.take(fsim,ind,0)
if callback is not None:
callback(fcalls[0], sim[0], min(fsim))
iterations += 1
if retall:
allvecs.append(sim[0])
x = sim[0]
fval = min(fsim)
warnflag = 0
if fcalls[0] >= maxfun:
warnflag = 1
if disp:
print "Warning: Maximum number of function evaluations has "\
"been exceeded."
elif iterations >= maxiter:
warnflag = 2
if disp:
print "Warning: Maximum number of iterations has been exceeded"
else:
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % iterations
print " Function evaluations: %d" % fcalls[0]
if full_output:
retlist = x, fval, iterations, fcalls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = x
if retall:
retlist = (x, allvecs)
return retlist
def _cubicmin(a,fa,fpa,b,fb,c,fc):
# finds the minimizer for a cubic polynomial that goes through the
# points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
#
# if no minimizer can be found return None
#
# f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
C = fpa
D = fa
db = b-a
dc = c-a
if (db == 0) or (dc == 0) or (b==c): return None
denom = (db*dc)**2 * (db-dc)
d1 = empty((2,2))
d1[0,0] = dc**2
d1[0,1] = -db**2
d1[1,0] = -dc**3
d1[1,1] = db**3
[A,B] = numpy.dot(d1,asarray([fb-fa-C*db,fc-fa-C*dc]).flatten())
A /= denom
B /= denom
radical = B*B-3*A*C
if radical < 0: return None
if (A == 0): return None
xmin = a + (-B + sqrt(radical))/(3*A)
return xmin
def _quadmin(a,fa,fpa,b,fb):
# finds the minimizer for a quadratic polynomial that goes through
# the points (a,fa), (b,fb) with derivative at a of fpa
# f(x) = B*(x-a)^2 + C*(x-a) + D
D = fa
C = fpa
db = b-a*1.0
if (db==0): return None
B = (fb-D-C*db)/(db*db)
if (B <= 0): return None
xmin = a - C / (2.0*B)
return xmin
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo,
phi, derphi, phi0, derphi0, c1, c2):
maxiter = 10
i = 0
delta1 = 0.2 # cubic interpolant check
delta2 = 0.1 # quadratic interpolant check
phi_rec = phi0
a_rec = 0
while 1:
# interpolate to find a trial step length between a_lo and a_hi
# Need to choose interpolation here. Use cubic interpolation and then if the
# result is within delta * dalpha or outside of the interval bounded by a_lo or a_hi
# then use quadratic interpolation, if the result is still too close, then use bisection
dalpha = a_hi-a_lo;
if dalpha < 0: a,b = a_hi,a_lo
else: a,b = a_lo, a_hi
# minimizer of cubic interpolant
# (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
# if the result is too close to the end points (or out of the interval)
# then use quadratic interpolation with phi_lo, derphi_lo and phi_hi
# if the result is stil too close to the end points (or out of the interval)
# then use bisection
if (i > 0):
cchk = delta1*dalpha
a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec)
if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk):
qchk = delta2*dalpha
a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi)
if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk):
a_j = a_lo + 0.5*dalpha
# print "Using bisection."
# else: print "Using quadratic."
# else: print "Using cubic."
# Check new value of a_j
phi_aj = phi(a_j)
if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo):
phi_rec = phi_hi
a_rec = a_hi
a_hi = a_j
phi_hi = phi_aj
else:
derphi_aj = derphi(a_j)
if abs(derphi_aj) <= -c2*derphi0:
a_star = a_j
val_star = phi_aj
valprime_star = derphi_aj
break
if derphi_aj*(a_hi - a_lo) >= 0:
phi_rec = phi_hi
a_rec = a_hi
a_hi = a_lo
phi_hi = phi_lo
else:
phi_rec = phi_lo
a_rec = a_lo
a_lo = a_j
phi_lo = phi_aj
derphi_lo = derphi_aj
i += 1
if (i > maxiter):
a_star = a_j
val_star = phi_aj
valprime_star = None
break
return a_star, val_star, valprime_star
def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval,
args=(), c1=1e-4, c2=0.9, amax=50):
"""Find alpha that satisfies strong Wolfe conditions.
:Parameters:
f : callable f(x,*args)
Objective function.
myfprime : callable f'(x,*args)
Objective function gradient (can be None).
xk : ndarray
Starting point.
pk : ndarray
Search direction.
gfk : ndarray
Gradient value for x=xk (xk being the current parameter
estimate).
args : tuple
Additional arguments passed to objective function.
c1 : float
Parameter for Armijo condition rule.
c2 : float
Parameter for curvature condition rule.
:Returns:
alpha0 : float
Alpha for which ``x_new = x0 + alpha * pk``.
fc : int
Number of function evaluations made.
gc : int
Number of gradient evaluations made.
:Notes:
Uses the line search algorithm to enforce strong Wolfe
conditions. See Wright and Nocedal, 'Numerical Optimization',
1999, pg. 59-60.
For the zoom phase it uses an algorithm by [...].
"""
global _ls_fc, _ls_gc, _ls_ingfk
_ls_fc = 0
_ls_gc = 0
_ls_ingfk = None
def phi(alpha):
global _ls_fc
_ls_fc += 1
return f(xk+alpha*pk,*args)
if isinstance(myfprime,type(())):
def phiprime(alpha):
global _ls_fc, _ls_ingfk
_ls_fc += len(xk)+1
eps = myfprime[1]
fprime = myfprime[0]
newargs = (f,eps) + args
_ls_ingfk = fprime(xk+alpha*pk,*newargs) # store for later use
return numpy.dot(_ls_ingfk,pk)
else:
fprime = myfprime
def phiprime(alpha):
global _ls_gc, _ls_ingfk
_ls_gc += 1
_ls_ingfk = fprime(xk+alpha*pk,*args) # store for later use
return numpy.dot(_ls_ingfk,pk)
alpha0 = 0
phi0 = old_fval
derphi0 = numpy.dot(gfk,pk)
alpha1 = pymin(1.0,1.01*2*(phi0-old_old_fval)/derphi0)
if alpha1 == 0:
# This shouldn't happen. Perhaps the increment has slipped below
# machine precision? For now, set the return variables skip the
# useless while loop, and raise warnflag=2 due to possible imprecision.
alpha_star = None
fval_star = old_fval
old_fval = old_old_fval
fprime_star = None
phi_a1 = phi(alpha1)
#derphi_a1 = phiprime(alpha1) evaluated below
phi_a0 = phi0
derphi_a0 = derphi0
i = 1
maxiter = 10
while 1: # bracketing phase
if alpha1 == 0:
break
if (phi_a1 > phi0 + c1*alpha1*derphi0) or \
((phi_a1 >= phi_a0) and (i > 1)):
alpha_star, fval_star, fprime_star = \
zoom(alpha0, alpha1, phi_a0,
phi_a1, derphi_a0, phi, phiprime,
phi0, derphi0, c1, c2)
break
derphi_a1 = phiprime(alpha1)
if (abs(derphi_a1) <= -c2*derphi0):
alpha_star = alpha1
fval_star = phi_a1
fprime_star = derphi_a1
break
if (derphi_a1 >= 0):
alpha_star, fval_star, fprime_star = \
zoom(alpha1, alpha0, phi_a1,
phi_a0, derphi_a1, phi, phiprime,
phi0, derphi0, c1, c2)
break
alpha2 = 2 * alpha1 # increase by factor of two on each iteration
i = i + 1
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi(alpha1)
derphi_a0 = derphi_a1
# stopping test if lower function not found
if (i > maxiter):
alpha_star = alpha1
fval_star = phi_a1
fprime_star = None
break
if fprime_star is not None:
# fprime_star is a number (derphi) -- so use the most recently
# calculated gradient used in computing it derphi = gfk*pk
# this is the gradient at the next step no need to compute it
# again in the outer loop.
fprime_star = _ls_ingfk
return alpha_star, _ls_fc, _ls_gc, fval_star, old_fval, fprime_star
def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
"""Minimize over alpha, the function ``f(xk+alpha pk)``.
Uses the interpolation algorithm (Armiijo backtracking) as suggested by
Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57
:Returns: (alpha, fc, gc)
"""
xk = atleast_1d(xk)
fc = 0
phi0 = old_fval # compute f(xk) -- done in past loop
phi_a0 = f(*((xk+alpha0*pk,)+args))
fc = fc + 1
derphi0 = numpy.dot(gfk,pk)
if (phi_a0 <= phi0 + c1*alpha0*derphi0):
return alpha0, fc, 0, phi_a0
# Otherwise compute the minimizer of a quadratic interpolant:
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
phi_a1 = f(*((xk+alpha1*pk,)+args))
fc = fc + 1
if (phi_a1 <= phi0 + c1*alpha1*derphi0):
return alpha1, fc, 0, phi_a1
# Otherwise loop with cubic interpolation until we find an alpha which
# satifies the first Wolfe condition (since we are backtracking, we will
# assume that the value of alpha is not too small and satisfies the second
# condition.
while 1: # we are assuming pk is a descent direction
factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
a = a / factor
b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
b = b / factor
alpha2 = (-b + numpy.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
phi_a2 = f(*((xk+alpha2*pk,)+args))
fc = fc + 1
if (phi_a2 <= phi0 + c1*alpha2*derphi0):
return alpha2, fc, 0, phi_a2
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
alpha2 = alpha1 / 2.0
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi_a2
def approx_fprime(xk,f,epsilon,*args):
f0 = f(*((xk,)+args))
grad = numpy.zeros((len(xk),), float)
ei = numpy.zeros((len(xk),), float)
for k in range(len(xk)):
ei[k] = epsilon
grad[k] = (f(*((xk+ei,)+args)) - f0)/epsilon
ei[k] = 0.0
return grad
def check_grad(func, grad, x0, *args):
return sqrt(sum((grad(x0,*args)-approx_fprime(x0,func,_epsilon,*args))**2))
def approx_fhess_p(x0,p,fprime,epsilon,*args):
f2 = fprime(*((x0+epsilon*p,)+args))
f1 = fprime(*((x0,)+args))
return (f2 - f1)/epsilon
def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf,
epsilon=_epsilon, maxiter=None, full_output=0, disp=1,
retall=0, callback=None):
"""Minimize a function using the BFGS algorithm.
:Parameters:
f : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
fprime : callable f'(x,*args)
Gradient of f.
args : tuple
Extra arguments passed to f and fprime.
gtol : float
Gradient norm must be less than gtol before succesful termination.
norm : float
Order of norm (Inf is max, -Inf is min)
epsilon : int or ndarray
If fprime is approximated, use this value for the step size.
callback : callable
An optional user-supplied function to call after each
iteration. Called as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, gopt, Hopt, func_calls, grad_calls, warnflag}, <allvecs>)
xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.
fopt : float
Minimum value.
gopt : ndarray
Value of gradient at minimum, f'(xopt), which should be near 0.
Bopt : ndarray
Value of 1/f''(xopt), i.e. the inverse hessian matrix.
func_calls : int
Number of function_calls made.
grad_calls : int
Number of gradient calls made.
warnflag : integer
1 : Maximum number of iterations exceeded.
2 : Gradient and/or function calls not changing.
allvecs : list
Results at each iteration. Only returned if retall is True.
*Other Parameters*:
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True,return fopt, func_calls, grad_calls, and warnflag
in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
Return a list of results at each iteration if True.
:Notes:
Optimize the function, f, whose gradient is given by fprime
using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) See Wright, and Nocedal 'Numerical
Optimization', 1999, pg. 198.
*See Also*:
scikits.openopt : SciKit which offers a unified syntax to call
this and other solvers.
"""
x0 = asarray(x0).squeeze()
if x0.ndim == 0:
x0.shape = (1,)
if maxiter is None:
maxiter = len(x0)*200
func_calls, f = wrap_function(f, args)
if fprime is None:
grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
else:
grad_calls, myfprime = wrap_function(fprime, args)
gfk = myfprime(x0)
k = 0
N = len(x0)
I = numpy.eye(N,dtype=int)
Hk = I
old_fval = f(x0)
old_old_fval = old_fval + 5000
xk = x0
if retall:
allvecs = [x0]
sk = [2*gtol]
warnflag = 0
gnorm = vecnorm(gfk,ord=norm)
while (gnorm > gtol) and (k < maxiter):
pk = -numpy.dot(Hk,gfk)
alpha_k = None
if linesearch is not None:
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
linesearch.line_search(f,myfprime,xk,pk,gfk,
old_fval,old_old_fval)
if alpha_k is None: # line search failed try different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
line_search(f,myfprime,xk,pk,gfk,
old_fval,old_old_fval)
if alpha_k is None:
# line search(es) failed to find a better solution.
warnflag = 2
break
xkp1 = xk + alpha_k * pk
if retall:
allvecs.append(xkp1)
sk = xkp1 - xk
xk = xkp1
if gfkp1 is None:
gfkp1 = myfprime(xkp1)
yk = gfkp1 - gfk
gfk = gfkp1
if callback is not None:
callback(func_calls[0], xk, old_fval)
k += 1
gnorm = vecnorm(gfk,ord=norm)
if (gnorm <= gtol):
break
try: # this was handled in numeric, let it remaines for more safety
rhok = 1.0 / (numpy.dot(yk,sk))
except ZeroDivisionError:
rhok = 1000.0
print "Divide-by-zero encountered: rhok assumed large"
if isinf(rhok): # this is patch for numpy
rhok = 1000.0
print "Divide-by-zero encountered: rhok assumed large"
A1 = I - sk[:,numpy.newaxis] * yk[numpy.newaxis,:] * rhok
A2 = I - yk[:,numpy.newaxis] * sk[numpy.newaxis,:] * rhok
Hk = numpy.dot(A1,numpy.dot(Hk,A2)) + rhok * sk[:,numpy.newaxis] \
* sk[numpy.newaxis,:]
if disp or full_output:
fval = old_fval
if warnflag == 2:
if disp:
print "Warning: Desired error not necessarily achieved" \
"due to precision loss"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
elif k >= maxiter:
warnflag = 1
if disp:
print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
else:
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
if full_output:
retlist = xk, fval, gfk, Hk, func_calls[0], grad_calls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = xk
if retall:
retlist = (xk, allvecs)
return retlist
def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, epsilon=_epsilon,
maxiter=None, full_output=0, disp=1, retall=0, callback=None):
"""Minimize a function using a nonlinear conjugate gradient algorithm.
:Parameters:
f : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
fprime : callable f'(x,*args)
Function which computes the gradient of f.
args : tuple
Extra arguments passed to f and fprime.
gtol : float
Stop when norm of gradient is less than gtol.
norm : float
Order of vector norm to use. -Inf is min, Inf is max.
epsilon : float or ndarray
If fprime is approximated, use this value for the step
size (can be scalar or vector).
callback : callable
An optional user-supplied function, called after each
iteration. Called as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, func_calls, grad_calls, warnflag}, {allvecs})
xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.
fopt : float
Minimum value found, f(xopt).
func_calls : int
The number of function_calls made.
grad_calls : int
The number of gradient calls made.
warnflag : int
1 : Maximum number of iterations exceeded.
2 : Gradient and/or function calls not changing.
allvecs : ndarray
If retall is True (see other parameters below), then this
vector containing the result at each iteration is returned.
*Other Parameters*:
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True then return fopt, func_calls, grad_calls, and
warnflag in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
return a list of results at each iteration if True.
:Notes:
Optimize the function, f, whose gradient is given by fprime
using the nonlinear conjugate gradient algorithm of Polak and
Ribiere See Wright, and Nocedal 'Numerical Optimization',
1999, pg. 120-122.
"""
x0 = asarray(x0).flatten()
if maxiter is None:
maxiter = len(x0)*200
func_calls, f = wrap_function(f, args)
if fprime is None:
grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
else:
grad_calls, myfprime = wrap_function(fprime, args)
gfk = myfprime(x0)
k = 0
N = len(x0)
xk = x0
old_fval = f(xk)
old_old_fval = old_fval + 5000
if retall:
allvecs = [xk]
sk = [2*gtol]
warnflag = 0
pk = -gfk
gnorm = vecnorm(gfk,ord=norm)
while (gnorm > gtol) and (k < maxiter):
deltak = numpy.dot(gfk,gfk)
# These values are modified by the line search, even if it fails
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval
alpha_k = None
if linesearch is not None:
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
linesearch.line_search(f,myfprime,xk,pk,gfk,old_fval,
old_old_fval,c2=0.4)
if alpha_k is None: # line search failed -- use different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
line_search(f,myfprime,xk,pk,gfk,
old_fval_backup,old_old_fval_backup)
if alpha_k is None or alpha_k == 0:
# line search(es) failed to find a better solution.
warnflag = 2
break
xk = xk + alpha_k*pk
if retall:
allvecs.append(xk)
if gfkp1 is None:
gfkp1 = myfprime(xk)
yk = gfkp1 - gfk
beta_k = pymax(0,numpy.dot(yk,gfkp1)/deltak)
pk = -gfkp1 + beta_k * pk
gfk = gfkp1
gnorm = vecnorm(gfk,ord=norm)
if callback is not None:
callback(func_calls[0], xk, old_fval)
k += 1
if disp or full_output:
fval = old_fval
if warnflag == 2:
if disp:
print "Warning: Desired error not necessarily achieved due to precision loss"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
elif k >= maxiter:
warnflag = 1
if disp:
print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
else:
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls[0]
print " Gradient evaluations: %d" % grad_calls[0]
if full_output:
retlist = xk, fval, func_calls[0], grad_calls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = xk
if retall:
retlist = (xk, allvecs)
return retlist
def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0,
callback=None):
"""Minimize a function using the Newton-CG method.
:Parameters:
f : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
fprime : callable f'(x,*args)
Gradient of f.
fhess_p : callable fhess_p(x,p,*args)
Function which computes the Hessian of f times an
arbitrary vector, p.
fhess : callable fhess(x,*args)
Function to compute the Hessian matrix of f.
args : tuple
Extra arguments passed to f, fprime, fhess_p, and fhess
(the same set of extra arguments is supplied to all of
these functions).
epsilon : float or ndarray
If fhess is approximated, use this value for the step size.
callback : callable
An optional user-supplied function which is called after
each iteration. Called as callback(n,xk,f), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, fcalls, gcalls, hcalls, warnflag},{allvecs})
xopt : ndarray
Parameters which minimizer f, i.e. ``f(xopt) == fopt``.
fopt : float
Value of the function at xopt, i.e. ``fopt = f(xopt)``.
fcalls : int
Number of function calls made.
gcalls : int
Number of gradient calls made.
hcalls : int
Number of hessian calls made.
warnflag : int
Warnings generated by the algorithm.
1 : Maximum number of iterations exceeded.
allvecs : list
The result at each iteration, if retall is True (see below).
*Other Parameters*:
avextol : float
Convergence is assumed when the average relative error in
the minimizer falls below this amount.
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True, return the optional outputs.
disp : bool
If True, print convergence message.
retall : bool
If True, return a list of results at each iteration.
:Notes:
1. scikits.openopt offers a unified syntax to call this and other solvers.
2. Only one of `fhess_p` or `fhess` need to be given. If `fhess`
is provided, then `fhess_p` will be ignored. If neither `fhess`
nor `fhess_p` is provided, then the hessian product will be
approximated using finite differences on `fprime`. `fhess_p`
must compute the hessian times an arbitrary vector. If it is not
given, finite-differences on `fprime` are used to compute
it. See Wright, and Nocedal 'Numerical Optimization', 1999,
pg. 140.
"""
x0 = asarray(x0).flatten()
fcalls, f = wrap_function(f, args)
gcalls, fprime = wrap_function(fprime, args)
hcalls = 0
if maxiter is None:
maxiter = len(x0)*200
xtol = len(x0)*avextol
update = [2*xtol]
xk = x0
if retall:
allvecs = [xk]
k = 0
old_fval = f(x0)
while (numpy.add.reduce(abs(update)) > xtol) and (k < maxiter):
# Compute a search direction pk by applying the CG method to
# del2 f(xk) p = - grad f(xk) starting from 0.
b = -fprime(xk)
maggrad = numpy.add.reduce(abs(b))
eta = min([0.5,numpy.sqrt(maggrad)])
termcond = eta * maggrad
xsupi = zeros(len(x0), dtype=x0.dtype)
ri = -b
psupi = -ri
i = 0
dri0 = numpy.dot(ri,ri)
if fhess is not None: # you want to compute hessian once.
A = fhess(*(xk,)+args)
hcalls = hcalls + 1
while numpy.add.reduce(abs(ri)) > termcond:
if fhess is None:
if fhess_p is None:
Ap = approx_fhess_p(xk,psupi,fprime,epsilon)
else:
Ap = fhess_p(xk,psupi, *args)
hcalls = hcalls + 1
else:
Ap = numpy.dot(A,psupi)
# check curvature
Ap = asarray(Ap).squeeze() # get rid of matrices...
curv = numpy.dot(psupi,Ap)
if curv == 0.0:
break
elif curv < 0:
if (i > 0):
break
else:
xsupi = xsupi + dri0/curv * psupi
break
alphai = dri0 / curv
xsupi = xsupi + alphai * psupi
ri = ri + alphai * Ap
dri1 = numpy.dot(ri,ri)
betai = dri1 / dri0
psupi = -ri + betai * psupi
i = i + 1
dri0 = dri1 # update numpy.dot(ri,ri) for next time.
pk = xsupi # search direction is solution to system.
gfk = -b # gradient at xk
alphak, fc, gc, old_fval = line_search_BFGS(f,xk,pk,gfk,old_fval)
update = alphak * pk
xk = xk + update # upcast if necessary
if callback is not None:
callback(fcalls[0], xk, old_fval)
if retall:
allvecs.append(xk)
k += 1
if disp or full_output:
fval = old_fval
if k >= maxiter:
warnflag = 1
if disp:
print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % fcalls[0]
print " Gradient evaluations: %d" % gcalls[0]
print " Hessian evaluations: %d" % hcalls
else:
warnflag = 0
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % fcalls[0]
print " Gradient evaluations: %d" % gcalls[0]
print " Hessian evaluations: %d" % hcalls
if full_output:
retlist = xk, fval, fcalls[0], gcalls[0], hcalls, warnflag
if retall:
retlist += (allvecs,)
else:
retlist = xk
if retall:
retlist = (xk, allvecs)
return retlist
def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500,
full_output=0, disp=1):
"""Bounded minimization for scalar functions.
:Parameters:
func : callable f(x,*args)
Objective function to be minimized (must accept and return scalars).
x1, x2 : float or array scalar
The optimization bounds.
args : tuple
Extra arguments passed to function.
xtol : float
The convergence tolerance.
maxfun : int
Maximum number of function evaluations allowed.
full_output : bool
If True, return optional outputs.
disp : int
If non-zero, print messages.
0 : no message printing.
1 : non-convergence notification messages only.
2 : print a message on convergence too.
3 : print iteration results.
:Returns: (xopt, {fval, ierr, numfunc})
xopt : ndarray
Parameters (over given interval) which minimize the
objective function.
fval : number
The function value at the minimum point.
ierr : int
An error flag (0 if converged, 1 if maximum number of
function calls reached).
numfunc : int
The number of function calls made.
:Notes:
Finds a local minimizer of the scalar function `func` in the
interval x1 < xopt < x2 using Brent's method. (See `brent`
for auto-bracketing).
"""
# Test bounds are of correct form
if not (is_array_scalar(x1) and is_array_scalar(x2)):
raise ValueError("Optimisation bounds must be scalars"
" or array scalars.")
if x1 > x2:
raise ValueError("The lower bound exceeds the upper bound.")
flag = 0
header = ' Func-count x f(x) Procedure'
step=' initial'
sqrt_eps = sqrt(2.2e-16)
golden_mean = 0.5*(3.0-sqrt(5.0))
a, b = x1, x2
fulc = a + golden_mean*(b-a)
nfc, xf = fulc, fulc
rat = e = 0.0
x = xf
fx = func(x,*args)
num = 1
fmin_data = (1, xf, fx)
ffulc = fnfc = fx
xm = 0.5*(a+b)
tol1 = sqrt_eps*abs(xf) + xtol / 3.0
tol2 = 2.0*tol1
if disp > 2:
print (" ")
print (header)
print "%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))
while ( abs(xf-xm) > (tol2 - 0.5*(b-a)) ):
golden = 1
# Check for parabolic fit
if abs(e) > tol1:
golden = 0
r = (xf-nfc)*(fx-ffulc)
q = (xf-fulc)*(fx-fnfc)
p = (xf-fulc)*q - (xf-nfc)*r
q = 2.0*(q-r)
if q > 0.0: p = -p
q = abs(q)
r = e
e = rat
# Check for acceptability of parabola
if ( (abs(p) < abs(0.5*q*r)) and (p > q*(a-xf)) and \
(p < q*(b-xf))):
rat = (p+0.0) / q;
x = xf + rat
step = ' parabolic'
if ((x-a) < tol2) or ((b-x) < tol2):
si = numpy.sign(xm-xf) + ((xm-xf)==0)
rat = tol1*si
else: # do a golden section step
golden = 1
if golden: # Do a golden-section step
if xf >= xm:
e=a-xf
else:
e=b-xf
rat = golden_mean*e
step = ' golden'
si = numpy.sign(rat) + (rat == 0)
x = xf + si*max([abs(rat), tol1])
fu = func(x,*args)
num += 1
fmin_data = (num, x, fu)
if disp > 2:
print "%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))
if fu <= fx:
if x >= xf:
a = xf
else:
b = xf
fulc, ffulc = nfc, fnfc
nfc, fnfc = xf, fx
xf, fx = x, fu
else:
if x < xf:
a = x
else:
b = x
if (fu <= fnfc) or (nfc == xf):
fulc, ffulc = nfc, fnfc
nfc, fnfc = x, fu
elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc):
fulc, ffulc = x, fu
xm = 0.5*(a+b)
tol1 = sqrt_eps*abs(xf) + xtol/3.0
tol2 = 2.0*tol1
if num >= maxfun:
flag = 1
fval = fx
if disp > 0:
_endprint(x, flag, fval, maxfun, xtol, disp)
if full_output:
return xf, fval, flag, num
else:
return xf
fval = fx
if disp > 0:
_endprint(x, flag, fval, maxfun, xtol, disp)
if full_output:
return xf, fval, flag, num
else:
return xf
class Brent:
#need to rethink design of __init__
def __init__(self, func, tol=1.48e-8, maxiter=500):
self.func = func
self.tol = tol
self.maxiter = maxiter
self._mintol = 1.0e-11
self._cg = 0.3819660
self.xmin = None
self.fval = None
self.iter = 0
self.funcalls = 0
self.brack = None
self._brack_info = None
#need to rethink design of set_bracket (new options, etc)
def set_bracket(self, brack = None):
self.brack = brack
self._brack_info = self.get_bracket_info()
def get_bracket_info(self):
#set up
func = self.func
brack = self.brack
### BEGIN core bracket_info code ###
### carefully DOCUMENT any CHANGES in core ##
if brack is None:
xa,xb,xc,fa,fb,fc,funcalls = bracket(func)
elif len(brack) == 2:
xa,xb,xc,fa,fb,fc,funcalls = bracket(func, xa=brack[0], xb=brack[1])
elif len(brack) == 3:
xa,xb,xc = brack
if (xa > xc): # swap so xa < xc can be assumed
dum = xa; xa=xc; xc=dum
assert ((xa < xb) and (xb < xc)), "Not a bracketing interval."
fa = func(xa)
fb = func(xb)
fc = func(xc)
assert ((fb<fa) and (fb < fc)), "Not a bracketing interval."
funcalls = 3
else:
raise ValueError, "Bracketing interval must be length 2 or 3 sequence."
### END core bracket_info code ###
self.funcalls += funcalls
return xa,xb,xc,fa,fb,fc
def optimize(self):
#set up for optimization
func = self.func
if self._brack_info is None:
self.set_bracket(None)
xa,xb,xc,fa,fb,fc = self._brack_info
_mintol = self._mintol
_cg = self._cg
#################################
#BEGIN CORE ALGORITHM
#we are making NO CHANGES in this
#################################
x=w=v=xb
fw=fv=fx=func(x)
if (xa < xc):
a = xa; b = xc
else:
a = xc; b = xa
deltax= 0.0
funcalls = 1
iter = 0
while (iter < self.maxiter):
tol1 = self.tol*abs(x) + _mintol
tol2 = 2.0*tol1
xmid = 0.5*(a+b)
if abs(x-xmid) < (tol2-0.5*(b-a)): # check for convergence
xmin=x; fval=fx
break
infinities_present = [f for f in [fw, fv, fx] if numpy.isposinf(f)]
if infinities_present or (abs(deltax) <= tol1):
if (x>=xmid): deltax=a-x # do a golden section step
else: deltax=b-x
rat = _cg*deltax
else: # do a parabolic step
tmp1 = (x-w)*(fx-fv)
tmp2 = (x-v)*(fx-fw)
p = (x-v)*tmp2 - (x-w)*tmp1;
tmp2 = 2.0*(tmp2-tmp1)
if (tmp2 > 0.0): p = -p
tmp2 = abs(tmp2)
dx_temp = deltax
deltax= rat
# check parabolic fit
if ((p > tmp2*(a-x)) and (p < tmp2*(b-x)) and (abs(p) < abs(0.5*tmp2*dx_temp))):
rat = p*1.0/tmp2 # if parabolic step is useful.
u = x + rat
if ((u-a) < tol2 or (b-u) < tol2):
if xmid-x >= 0: rat = tol1
else: rat = -tol1
else:
if (x>=xmid): deltax=a-x # if it's not do a golden section step
else: deltax=b-x
rat = _cg*deltax
if (abs(rat) < tol1): # update by at least tol1
if rat >= 0: u = x + tol1
else: u = x - tol1
else:
u = x + rat
fu = func(u) # calculate new output value
funcalls += 1
if (fu > fx): # if it's bigger than current
if (u<x): a=u
else: b=u
if (fu<=fw) or (w==x):
v=w; w=u; fv=fw; fw=fu
elif (fu<=fv) or (v==x) or (v==w):
v=u; fv=fu
else:
if (u >= x): a = x
else: b = x
v=w; w=x; x=u
fv=fw; fw=fx; fx=fu
iter += 1
#################################
#END CORE ALGORITHM
#################################
self.xmin = x
self.fval = fx
self.iter = iter
self.funcalls = funcalls
def get_result(self, full_output=False):
if full_output:
return self.xmin, self.fval, self.iter, self.funcalls
else:
return self.xmin
def brent(func, brack=None, tol=1.48e-8, full_output=0, maxiter=500):
"""Given a function of one-variable and a possible bracketing interval,
return the minimum of the function isolated to a fractional precision of
tol.
:Parameters:
func : callable f(x)
Objective function.
brack : tuple
Triple (a,b,c) where (a<b<c) and func(b) <
func(a),func(c). If bracket consists of two numbers (a,c)
then they are assumed to be a starting interval for a
downhill bracket search (see `bracket`); it doesn't always
mean that the obtained solution will satisfy a<=x<=c.
full_output : bool
If True, return all output args (xmin, fval, iter,
funcalls).
:Returns:
xmin : ndarray
Optimum point.
fval : float
Optimum value.
iter : int
Number of iterations.
funcalls : int
Number of objective function evaluations made.
Notes
-----
Uses inverse parabolic interpolation when possible to speed up convergence
of golden section method.
"""
brent = Brent(func=func, tol=tol, maxiter=maxiter)
brent.set_bracket(brack)
brent.optimize()
return brent.get_result(full_output=full_output)
def golden(func, args=(), brack=None, tol=_epsilon, full_output=0):
""" Given a function of one-variable and a possible bracketing interval,
return the minimum of the function isolated to a fractional precision of
tol.
:Parameters:
func : callable func(x,*args)
Objective function to minimize.
args : tuple
Additional arguments (if present), passed to func.
brack : tuple
Triple (a,b,c), where (a<b<c) and func(b) <
func(a),func(c). If bracket consists of two numbers (a,
c), then they are assumed to be a starting interval for a
downhill bracket search (see `bracket`); it doesn't always
mean that obtained solution will satisfy a<=x<=c.
tol : float
x tolerance stop criterion
full_output : bool
If True, return optional outputs.
:Notes:
Uses analog of bisection method to decrease the bracketed
interval.
"""
if brack is None:
xa,xb,xc,fa,fb,fc,funcalls = bracket(func, args=args)
elif len(brack) == 2:
xa,xb,xc,fa,fb,fc,funcalls = bracket(func, xa=brack[0], xb=brack[1], args=args)
elif len(brack) == 3:
xa,xb,xc = brack
if (xa > xc): # swap so xa < xc can be assumed
dum = xa; xa=xc; xc=dum
assert ((xa < xb) and (xb < xc)), "Not a bracketing interval."
fa = func(*((xa,)+args))
fb = func(*((xb,)+args))
fc = func(*((xc,)+args))
assert ((fb<fa) and (fb < fc)), "Not a bracketing interval."
funcalls = 3
else:
raise ValueError, "Bracketing interval must be length 2 or 3 sequence."
_gR = 0.61803399
_gC = 1.0-_gR
x3 = xc
x0 = xa
if (abs(xc-xb) > abs(xb-xa)):
x1 = xb
x2 = xb + _gC*(xc-xb)
else:
x2 = xb
x1 = xb - _gC*(xb-xa)
f1 = func(*((x1,)+args))
f2 = func(*((x2,)+args))
funcalls += 2
while (abs(x3-x0) > tol*(abs(x1)+abs(x2))):
if (f2 < f1):
x0 = x1; x1 = x2; x2 = _gR*x1 + _gC*x3
f1 = f2; f2 = func(*((x2,)+args))
else:
x3 = x2; x2 = x1; x1 = _gR*x2 + _gC*x0
f2 = f1; f1 = func(*((x1,)+args))
funcalls += 1
if (f1 < f2):
xmin = x1
fval = f1
else:
xmin = x2
fval = f2
if full_output:
return xmin, fval, funcalls
else:
return xmin
def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000):
"""Given a function and distinct initial points, search in the
downhill direction (as defined by the initital points) and return
new points xa, xb, xc that bracket the minimum of the function
f(xa) > f(xb) < f(xc). It doesn't always mean that obtained
solution will satisfy xa<=x<=xb
:Parameters:
func : callable f(x,*args)
Objective function to minimize.
xa, xb : float
Bracketing interval.
args : tuple
Additional arguments (if present), passed to `func`.
grow_limit : float
Maximum grow limit.
maxiter : int
Maximum number of iterations to perform.
:Returns: xa, xb, xc, fa, fb, fc, funcalls
xa, xb, xc : float
Bracket.
fa, fb, fc : float
Objective function values in bracket.
funcalls : int
Number of function evaluations made.
"""
_gold = 1.618034
_verysmall_num = 1e-21
fa = func(*(xa,)+args)
fb = func(*(xb,)+args)
if (fa < fb): # Switch so fa > fb
dum = xa; xa = xb; xb = dum
dum = fa; fa = fb; fb = dum
xc = xb + _gold*(xb-xa)
fc = func(*((xc,)+args))
funcalls = 3
iter = 0
while (fc < fb):
tmp1 = (xb - xa)*(fb-fc)
tmp2 = (xb - xc)*(fb-fa)
val = tmp2-tmp1
if abs(val) < _verysmall_num:
denom = 2.0*_verysmall_num
else:
denom = 2.0*val
w = xb - ((xb-xc)*tmp2-(xb-xa)*tmp1)/denom
wlim = xb + grow_limit*(xc-xb)
if iter > maxiter:
raise RuntimeError, "Too many iterations."
iter += 1
if (w-xc)*(xb-w) > 0.0:
fw = func(*((w,)+args))
funcalls += 1
if (fw < fc):
xa = xb; xb=w; fa=fb; fb=fw
return xa, xb, xc, fa, fb, fc, funcalls
elif (fw > fb):
xc = w; fc=fw
return xa, xb, xc, fa, fb, fc, funcalls
w = xc + _gold*(xc-xb)
fw = func(*((w,)+args))
funcalls += 1
elif (w-wlim)*(wlim-xc) >= 0.0:
w = wlim
fw = func(*((w,)+args))
funcalls += 1
elif (w-wlim)*(xc-w) > 0.0:
fw = func(*((w,)+args))
funcalls += 1
if (fw < fc):
xb=xc; xc=w; w=xc+_gold*(xc-xb)
fb=fc; fc=fw; fw=func(*((w,)+args))
funcalls += 1
else:
w = xc + _gold*(xc-xb)
fw = func(*((w,)+args))
funcalls += 1
xa=xb; xb=xc; xc=w
fa=fb; fb=fc; fc=fw
return xa, xb, xc, fa, fb, fc, funcalls
def _linesearch_powell(linesearch, func, p, xi, tol):
"""Line-search algorithm using fminbound.
Find the minimium of the function ``func(x0+ alpha*direc)``.
"""
def myfunc(alpha):
return func(p + alpha * xi)
alpha_min, fret, iter, num = linesearch(myfunc, full_output=1, tol=tol)
xi = alpha_min*xi
return squeeze(fret), p+xi, xi
def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None,
maxfun=None, full_output=0, disp=1, retall=0, callback=None,
direc=None, linesearch=brent):
"""Minimize a function using modified Powell's method.
:Parameters:
func : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
args : tuple
Eextra arguments passed to func.
callback : callable
An optional user-supplied function, called after each
iteration. Called as ``callback(n,xk,f)``, where ``xk`` is the
current parameter vector.
direc : ndarray
Initial direction set.
:Returns: (xopt, {fopt, xi, direc, iter, funcalls, warnflag}, {allvecs})
xopt : ndarray
Parameter which minimizes `func`.
fopt : number
Value of function at minimum: ``fopt = func(xopt)``.
direc : ndarray
Current direction set.
iter : int
Number of iterations.
funcalls : int
Number of function calls made.
warnflag : int
Integer warning flag:
1 : Maximum number of function evaluations.
2 : Maximum number of iterations.
allvecs : list
List of solutions at each iteration.
*Other Parameters*:
xtol : float
Line-search error tolerance.
ftol : float
Absolute error in ``func(xopt)`` acceptable for convergence.
maxiter : int
Maximum number of iterations to perform.
maxfun : int
Maximum number of function evaluations to make.
full_output : bool
If True, fopt, xi, direc, iter, funcalls, and
warnflag are returned.
disp : bool
If True, print convergence messages.
retall : bool
If True, return a list of the solution at each iteration.
:Notes:
Uses a modification of Powell's method to find the minimum of
a function of N variables.
"""
# we need to use a mutable object here that we can update in the
# wrapper function
fcalls, func = wrap_function(func, args)
x = asarray(x0).flatten()
if retall:
allvecs = [x]
N = len(x)
rank = len(x.shape)
if not -1 < rank < 2:
raise ValueError, "Initial guess must be a scalar or rank-1 sequence."
if maxiter is None:
maxiter = N * 1000
if maxfun is None:
maxfun = N * 1000
if direc is None:
direc = eye(N, dtype=float)
else:
direc = asarray(direc, dtype=float)
fval = squeeze(func(x))
x1 = x.copy()
iter = 0;
ilist = range(N)
while True:
fx = fval
bigind = 0
delta = 0.0
for i in ilist:
direc1 = direc[i]
fx2 = fval
fval, x, direc1 = _linesearch_powell(linesearch,
func, x, direc1, xtol*100)
if (fx2 - fval) > delta:
delta = fx2 - fval
bigind = i
iter += 1
if callback is not None:
callback(fcalls[0], x, fval, delta)
if retall:
allvecs.append(x)
if abs(fx - fval) < ftol: break
if fcalls[0] >= maxfun: break
if iter >= maxiter: break
# Construct the extrapolated point
direc1 = x - x1
x2 = 2*x - x1
x1 = x.copy()
fx2 = squeeze(func(x2))
if (fx > fx2):
t = 2.0*(fx+fx2-2.0*fval)
temp = (fx-fval-delta)
t *= temp*temp
temp = fx-fx2
t -= delta*temp*temp
if t < 0.0:
fval, x, direc1 = _linesearch_powell(linesearch,
func, x, direc1, xtol*100)
direc[bigind] = direc[-1]
direc[-1] = direc1
warnflag = 0
if fcalls[0] >= maxfun:
warnflag = 1
if disp:
print "Warning: Maximum number of function evaluations has "\
"been exceeded."
elif iter >= maxiter:
warnflag = 2
if disp:
print "Warning: Maximum number of iterations has been exceeded"
else:
if disp:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % iter
print " Function evaluations: %d" % fcalls[0]
x = squeeze(x)
if full_output:
retlist = x, fval, direc, iter, fcalls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = x
if retall:
retlist = (x, allvecs)
return retlist
def _endprint(x, flag, fval, maxfun, xtol, disp):
if flag == 0:
if disp > 1:
print "\nOptimization terminated successfully;\n" \
"The returned value satisfies the termination criteria\n" \
"(using xtol = ", xtol, ")"
if flag == 1:
print "\nMaximum number of function evaluations exceeded --- " \
"increase maxfun argument.\n"
return
def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin):
"""Minimize a function over a given range by brute force.
:Parameters:
func : callable ``f(x,*args)``
Objective function to be minimized.
ranges : tuple
Each element is a tuple of parameters or a slice object to
be handed to ``numpy.mgrid``.
args : tuple
Extra arguments passed to function.
Ns : int
Default number of samples, if those are not provided.
full_output : bool
If True, return the evaluation grid.
:Returns: (x0, fval, {grid, Jout})
x0 : ndarray
Value of arguments to `func`, giving minimum over the grid.
fval : int
Function value at minimum.
grid : tuple
Representation of the evaluation grid. It has the same
length as x0.
Jout : ndarray
Function values over grid: ``Jout = func(*grid)``.
:Notes:
Find the minimum of a function evaluated on a grid given by
the tuple ranges.
"""
N = len(ranges)
if N > 40:
raise ValueError, "Brute Force not possible with more " \
"than 40 variables."
lrange = list(ranges)
for k in range(N):
if type(lrange[k]) is not type(slice(None)):
if len(lrange[k]) < 3:
lrange[k] = tuple(lrange[k]) + (complex(Ns),)
lrange[k] = slice(*lrange[k])
if (N==1):
lrange = lrange[0]
def _scalarfunc(*params):
params = squeeze(asarray(params))
return func(params,*args)
vecfunc = vectorize(_scalarfunc)
grid = mgrid[lrange]
if (N==1):
grid = (grid,)
Jout = vecfunc(*grid)
Nshape = shape(Jout)
indx = argmin(Jout.ravel(),axis=-1)
Nindx = zeros(N,int)
xmin = zeros(N,float)
for k in range(N-1,-1,-1):
thisN = Nshape[k]
Nindx[k] = indx % Nshape[k]
indx = indx / thisN
for k in range(N):
xmin[k] = grid[k][tuple(Nindx)]
Jmin = Jout[tuple(Nindx)]
if (N==1):
grid = grid[0]
xmin = xmin[0]
if callable(finish):
vals = finish(func,xmin,args=args,full_output=1, disp=0)
xmin = vals[0]
Jmin = vals[1]
if vals[-1] > 0:
print "Warning: Final optimization did not succeed"
if full_output:
return xmin, Jmin, grid, Jout
else:
return xmin
def main():
import time
times = []
algor = []
x0 = [0.8,1.2,0.7]
print "Nelder-Mead Simplex"
print "==================="
start = time.time()
x = fmin(rosen,x0)
print x
times.append(time.time() - start)
algor.append('Nelder-Mead Simplex\t')
print
print "Powell Direction Set Method"
print "==========================="
start = time.time()
x = fmin_powell(rosen,x0)
print x
times.append(time.time() - start)
algor.append('Powell Direction Set Method.')
print
print "Nonlinear CG"
print "============"
start = time.time()
x = fmin_cg(rosen, x0, fprime=rosen_der, maxiter=200)
print x
times.append(time.time() - start)
algor.append('Nonlinear CG \t')
print
print "BFGS Quasi-Newton"
print "================="
start = time.time()
x = fmin_bfgs(rosen, x0, fprime=rosen_der, maxiter=80)
print x
times.append(time.time() - start)
algor.append('BFGS Quasi-Newton\t')
print
print "BFGS approximate gradient"
print "========================="
start = time.time()
x = fmin_bfgs(rosen, x0, gtol=1e-4, maxiter=100)
print x
times.append(time.time() - start)
algor.append('BFGS without gradient\t')
print
print "Newton-CG with Hessian product"
print "=============================="
start = time.time()
x = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_prod, maxiter=80)
print x
times.append(time.time() - start)
algor.append('Newton-CG with hessian product')
print
print "Newton-CG with full Hessian"
print "==========================="
start = time.time()
x = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, maxiter=80)
print x
times.append(time.time() - start)
algor.append('Newton-CG with full hessian')
print
print "\nMinimizing the Rosenbrock function of order 3\n"
print " Algorithm \t\t\t Seconds"
print "===========\t\t\t ========="
for k in range(len(algor)):
print algor[k], "\t -- ", times[k]
if __name__ == "__main__":
main()
|