1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
#cython: boundscheck=False
#(not slicing or indexing any numpy arrays)
#TODO:
# - extend to more then 3-dimensions (feature)
# - replace build_tree with non-recursive function (speed)
# - add the option to determine splitting planes based on point position spread
# (feature)
# - enable bottom-up algorithms by keeping track of ancestral node
# - common stack size constant, how?
cimport numpy as np
from numpy cimport NPY_DOUBLE, NPY_ULONGLONG, npy_intp
from stdlib cimport malloc, realloc, free
__version__ = "('1', '5', '3')"
cdef extern from "numpy/arrayobject.h":
cdef object PyArray_SimpleNewFromData(int nd, npy_intp *dims,\
int typenum, void *data)
cdef int import_array1(int ret)
cdef kdpoint *points(DTYPE_t *c_array, UTYPE_t points, UTYPE_t dims):
"""creates an array of kdpoints from c-array of numpy doubles."""
cdef kdpoint *pnts = <kdpoint *>malloc(sizeof(kdpoint)*points)
cdef UTYPE_t i
for 0 <= i < points:
pnts[i].index = i
pnts[i].coords = c_array+i*dims
return pnts
cdef inline void swap(kdpoint *a, kdpoint *b):
"""swaps two pointers to kdpoint structs."""
cdef kdpoint t
t = a[0]
a[0] = b[0]
b[0] = t
cdef inline DTYPE_t dist(kdpoint *a, kdpoint *b, UTYPE_t dims):
"""calculates the squared distance between two points."""
cdef UTYPE_t i
cdef DTYPE_t dif, dst = 0
for 0 <= i < dims:
dif = a.coords[i] - b.coords[i]
dst += dif * dif
return dst
cdef void qsort(kdpoint *A, UTYPE_t l, UTYPE_t r, UTYPE_t dim):
"""implements the quick sort algorithm on kdpoint arrays."""
cdef UTYPE_t i, j, jstack = 0
cdef DTYPE_t v
cdef UTYPE_t *istack = <UTYPE_t *>malloc(NSTACK * sizeof(UTYPE_t))
while True:
if r - l > 2:
i = (l + r) >> 1
if A[l].coords[dim] > A[i].coords[dim]: swap(&A[l], &A[i])
if A[l].coords[dim] > A[r].coords[dim]: swap(&A[l], &A[r])
if A[i].coords[dim] > A[r].coords[dim]: swap(&A[i], &A[r])
j = r - 1
swap(&A[i], &A[j])
i = l
v = A[j].coords[dim]
while True:
while A[i+1].coords[dim] < v: i+=1
i+=1
while A[j-1].coords[dim] > v: j-=1
j-=1
if j < i:
break
swap(&A[i], &A[j])
swap(&A[i], &A[r-1])
jstack += 2
if r - i >= j:
istack[jstack] = r
istack[jstack - 1] = i
r = j
else:
istack[jstack] = j
istack[jstack - 1] = l
l = i
else:
i = (l + r) >> 1
if A[l].coords[dim] > A[i].coords[dim]: swap(&A[l], &A[i])
if A[l].coords[dim] > A[r].coords[dim]: swap(&A[l], &A[r])
if A[i].coords[dim] > A[r].coords[dim]: swap(&A[i], &A[r])
if jstack == 0:
break
r = istack[jstack]
jstack-=1
l = istack[jstack]
jstack-=1
free(istack)
cdef kdnode *build_tree(kdpoint *point_list, UTYPE_t start, UTYPE_t end,\
UTYPE_t dims, UTYPE_t bucket_size, UTYPE_t depth):
"""recursive tree building function."""
# cannot make variable in if/else
cdef UTYPE_t split, i
cdef kdnode *node = <kdnode*>malloc(sizeof(kdnode))
node.dimension = depth % dims
node.start = start
node.end = end
if end - start <= bucket_size:
# make bucket node
node.bucket = 1
node.position = -1.0
node.left = NULL
node.right = NULL
else:
## make branch node
node.bucket = 0
split = (start + end) / 2
qsort(point_list, start, end, node.dimension)
node.position = point_list[split].coords[node.dimension]
# recurse
node.left = build_tree(point_list, start, split, dims , bucket_size , depth+1)
node.right = build_tree(point_list, split+1, end, dims , bucket_size , depth+1)
return node
cdef void *knn(kdnode *root, kdpoint *point_list, kdpoint point, DTYPE_t *dst,\
UTYPE_t *idx, UTYPE_t k, UTYPE_t dims):
"""finds the K-Nearest Neighbors."""
# arrays of pointers will be used as a stack for left and right nodes
# left nodes will be explored first.
cdef kdnode *lstack[100]
cdef UTYPE_t i, j, jold, ia, kmin # counter and index
cdef DTYPE_t a, i_dist, diff
cdef kdnode *node
# set helper variable to heap-queue
kmin = k - 1
# initialize stack
cdef int jstack = 1
lstack[jstack] = root
# initialize arrays
for 0 <= i < k:
dst[i] = 1000000000.00 # DBL_MAX
idx[i] = 2147483647 # INT_MAX
while jstack:
node = lstack[jstack]
jstack -= 1
if node.bucket:
for node.start <= i <= node.end:
i_dist = dist(&point_list[i], &point, dims)
if i_dist < dst[0]:
dst[0] = i_dist
idx[0] = i
if k > 1:
a = dst[0]
ia = idx[0]
jold = 0
j = 1
while j <= kmin:
if (j < kmin) and (dst[j] < dst[j+1]):
j+=1
if (a >= dst[j]):
break
dst[jold] = dst[j]
idx[jold] = idx[j]
jold = j
j = 2*j + 1
dst[jold] = a
idx[jold] = ia
else:
diff = point.coords[node.dimension] - node.position
if diff < 0:
if dst[0] >= diff * diff:
jstack+=1
lstack[jstack] = node.right
jstack+=1
lstack[jstack] = node.left
else:
if dst[0] >= diff * diff:
jstack+=1
lstack[jstack] = node.left
jstack+=1
lstack[jstack] = node.right
cdef UTYPE_t rn(kdnode *root, kdpoint *point_list, kdpoint point, DTYPE_t **dstptr,\
UTYPE_t **idxptr, DTYPE_t r, UTYPE_t dims, UTYPE_t buf):
"""finds points within radius of query."""
# arrays of pointers will be used as a stack for left and right nodes
# left nodes will be explored first.
cdef kdnode *lstack[100]
dstptr[0] = <DTYPE_t *>malloc(buf * sizeof(DTYPE_t))
idxptr[0] = <UTYPE_t *>malloc(buf * sizeof(UTYPE_t))
cdef UTYPE_t i, count # counter and index
cdef DTYPE_t i_dist, diff
cdef kdnode *node
# initialize stack
cdef int jstack = 1
lstack[jstack] = root
count = 0
while jstack:
node = lstack[jstack]
jstack -= 1
if node.bucket:
for node.start <= i <= node.end:
i_dist = dist(&point_list[i], &point, dims)
if i_dist < r:
dstptr[0][count] = i_dist
idxptr[0][count] = i
count += 1
if count % buf == 0:
dstptr[0] = <DTYPE_t *>realloc(dstptr[0], (count + buf) * sizeof(DTYPE_t))
idxptr[0] = <UTYPE_t *>realloc(idxptr[0], (count + buf) * sizeof(UTYPE_t))
else:
diff = point.coords[node.dimension] - node.position
if diff < 0:
if r >= diff * diff:
jstack+=1
lstack[jstack] = node.right
jstack+=1
lstack[jstack] = node.left
else:
if r >= diff * diff:
jstack+=1
lstack[jstack] = node.left
jstack+=1
lstack[jstack] = node.right
dstptr[0] = <DTYPE_t *>realloc(dstptr[0], count * sizeof(DTYPE_t))
idxptr[0] = <UTYPE_t *>realloc(idxptr[0], count * sizeof(UTYPE_t))
return count
cdef class KDTree:
"""Implements the KDTree data structure for fast neares neighbor queries."""
cdef np.ndarray n_array
cdef DTYPE_t *c_array
cdef kdpoint *kdpnts
cdef kdnode *tree
cdef readonly UTYPE_t dims
cdef readonly UTYPE_t pnts
cdef readonly UTYPE_t bucket_size
def __init__(self, np.ndarray[DTYPE_t, ndim =2] n_array, \
UTYPE_t bucket_size =5):
self.bucket_size = bucket_size
self.pnts = n_array.shape[0]
self.dims = n_array.shape[1]
self.n_array = n_array
self.c_array = <DTYPE_t *> n_array.data
self.kdpnts = points(self.c_array, \
self.pnts, self.dims)
self.tree = build_tree(self.kdpnts, 0, self.pnts-1, \
self.dims,self.bucket_size,0)
import_array1(0)
def knn(self, np.ndarray[DTYPE_t, ndim =1] point, npy_intp k):
"""Finds the K-Nearest Neighbors of given point.
Arguments:
- point: 1-d numpy array (query point).
- k: number of neighbors to find."""
if self.pnts < k:
return 1
cdef UTYPE_t i
cdef kdpoint pnt
pnt.coords = <DTYPE_t *>point.data
cdef UTYPE_t size = point.size
cdef DTYPE_t *dst = <DTYPE_t *>malloc(k * sizeof(DTYPE_t))
cdef UTYPE_t *idx = <UTYPE_t *>malloc(k * sizeof(UTYPE_t))
cdef UTYPE_t *ridx = <UTYPE_t *>malloc(k * sizeof(UTYPE_t))
knn(self.tree, self.kdpnts, pnt, dst, idx, k, self.dims)
cdef np.ndarray dist = PyArray_SimpleNewFromData(1, &k, NPY_DOUBLE, <void*>dst)
for 0 <= i < k:
ridx[i] = self.kdpnts[idx[i]].index
cdef np.ndarray index = PyArray_SimpleNewFromData(1, &k, NPY_ULONGLONG, <void*>ridx)
free(idx)
return (index, dist)
def rn(self, np.ndarray[DTYPE_t, ndim =1] point, DTYPE_t r):
"""Returns Radius Neighbors i.e. within radius from query point."""
cdef UTYPE_t i
cdef npy_intp j
cdef kdpoint pnt
pnt.coords = <DTYPE_t *>point.data
cdef UTYPE_t size = point.size
cdef DTYPE_t **dstptr = <DTYPE_t **>malloc(sizeof(DTYPE_t*))
cdef UTYPE_t **idxptr = <UTYPE_t **>malloc(sizeof(UTYPE_t*))
j = <npy_intp>rn(self.tree, self.kdpnts, pnt, dstptr, idxptr, r, self.dims, 100)
cdef np.ndarray dist = PyArray_SimpleNewFromData(1, &j, NPY_DOUBLE, <void*>dstptr[0])
cdef UTYPE_t *ridx = <UTYPE_t *>malloc(j * sizeof(UTYPE_t))
for 0 <= i < j:
ridx[i] = self.kdpnts[idxptr[0][i]].index
cdef np.ndarray index = PyArray_SimpleNewFromData(1, &j, NPY_ULONGLONG, <void*>ridx)
free(idxptr[0])
free(idxptr)
free(dstptr)
return (index, dist)
|