1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#!/usr/bin/env python
from __future__ import division
import numpy
import itertools
from cogent.core.tree import TreeBuilder
from cogent.phylo.tree_collection import ScoredTreeCollection
from cogent.util import parallel, checkpointing, progress_display as UI
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"
def ismallest(data, size):
"""There are many ways to get the k smallest items from an N sequence, and
which one performs best depends on k, N and k/N. This algorithm appears to
beat anything heapq can do, and stays with a factor of 2 of sort() and
min(). Is uses memory O(2*k) and so is particularly suitable for lazy
application to large N. It returns the smallest k sorted too."""
limit = 2 * size
data = iter(data)
best = list(itertools.islice(data, limit))
while True:
best.sort()
if len(best) <= size:
break
del best[size:]
worst_of_best = best[-1]
for item in data:
if item < worst_of_best:
best.append(item)
if len(best) > limit:
break
return best
# Trees are represented as "ancestry" matricies in which A[i,j] iff j is an
# ancestor of i. For LS calculations the ancestry matrix is converted
# to a "paths" matrix or "split metric" in which S[p,j] iff the path between
# the pth pair of tips passes through edge j. For ML calculations the
# ancestry matrix is converted back into an ordinary cogent tree object.
def tree2ancestry(tree, order=None):
nodes = tree.unrooted().getEdgeVector()[:-1]
if order is not None:
lookup = dict([(k,i) for (i,k) in enumerate(order)])
def _ordered_tips_first(n):
if n.Children:
return len(order)
else:
return lookup[n.Name]
nodes.sort(key=_ordered_tips_first)
n = len(nodes)
A = numpy.zeros([n, n], int)
seen = {}
for (i, node) in enumerate(nodes):
A[i, i] = 1
seen[id(node)] = i
for c in node.Children:
A[:,i] |= A[:,seen[id(c)]]
names = [n.Name for n in nodes if not n.Children]
lengths = [n.Length for n in nodes]
return (A, names, lengths)
def ancestry2tree(A, lengths, tip_names):
"""Convert edge x edge ancestry matrix to a cogent Tree object"""
tips = {}
tip = 0
for i in range(len(A)):
if numpy.sum(A[:,i]) == 1:
tips[i] = tip_names[tip]
tip += 1
assert tip == len(tip_names)
constructor = TreeBuilder().createEdge
free = {}
for i in numpy.argsort(numpy.sum(A, axis=0)):
children = [j for j in range(len(A)) if A[j, i] and j != i]
child_nodes = [free.pop(j) for j in children if j in free]
if child_nodes:
name = None
else:
name = tips[i]
if lengths is None:
params = {}
else:
params = {'length':lengths[i]}
node = constructor(child_nodes, name, params)
free[i] = node
return constructor(free.values(), 'root', {})
def grown(B, split_edge):
"""Ancestry matrix 'B' with one extra leaf added at 'split_edge'.
Row/column order within the matrix is independent of the topology it
represents. The added leaf will be the last one in the matrix, which keeps
the leaf node order the same as the order in which they are added, which is
what is assumed by ancestry2tree and ancestry2paths"""
n = len(B)
A = numpy.zeros([n+2, n+2], int)
A[:n, :n] = B
(sibling, parent) = (n, n + 1)
A[sibling] = A[parent] = A[split_edge]
A[:,parent] = A[:,split_edge]
A[sibling,split_edge] = 0
A[parent, split_edge] = 0
A[sibling,sibling] = 1
A[parent,parent] = 1
A[sibling,parent] = 1
A[split_edge,parent] = 1
return A
class TreeEvaluator(object):
"""Subclass must provide makeTreeScorer and result2output"""
def results2output(self, results):
return ScoredTreeCollection(results)
def evaluateTopology(self, tree):
"""Optimal (score, tree) for the one topology 'tree'"""
(ancestry, names, lengths) = tree2ancestry(tree)
evaluate = self.makeTreeScorer(names)
(err, lengths) = evaluate(ancestry)
return self.result2output(err, ancestry, lengths, names)
def evaluateTree(self, tree):
"""score for 'tree' with lengths as-is"""
(ancestry, names, lengths) = tree2ancestry(tree)
evaluate = self.makeTreeScorer(names)
(err, result) = evaluate(ancestry, lengths=lengths)
return err
def _consistentNameOrder(self, fixed_names, ordered_names=None):
"""fixed_names followed by ordered_names without duplicates"""
all_names = set(self.names)
fixed_names_set = set(fixed_names)
assert fixed_names_set.issubset(all_names)
if ordered_names:
assert set(ordered_names).issubset(all_names)
else:
ordered_names = self.names
names = list(fixed_names) + [n for n in ordered_names
if n not in fixed_names_set]
return names
@UI.display_wrap
def trex(self, a=8, k=1000, start=None, order=None, return_all=False,
filename=None, interval=None, ui=None):
"""TrexML policy for tree sampling - all trees up to size 'a' and
then keep no more than 'k' best trees at each tree size.
'order' is an optional list of tip names.
'start' is an optional list of initial trees. Each of the trees must
contain the same tips.
'filename' and 'interval' control checkpointing.
Advanced step-wise addition algorithm
M. J. Wolf, S. Easteal, M. Kahn, B. D. McKay, and L. S. Jermiin.
Trexml: a maximum-likelihood approach for extensive tree-space
exploration.
Bioinformatics, 16(4):383 94, 2000."""
checkpointer = checkpointing.Checkpointer(filename, interval)
if checkpointer.available():
(init_tree_size, fixed_names, trees) = checkpointer.load()
names = self._consistentNameOrder(fixed_names, order)
elif start is not None:
if not isinstance(start, list):
start = [start]
fixed_names = start[0].getTipNames()
names = self._consistentNameOrder(fixed_names, order)
trees = []
for tree in start:
# check the start tree represents a subset of tips
assert set(tree.getTipNames()) < set(self.names), \
"Starting tree names not a subset of the sequence names"
(ancestry, fixed_names2, lengths) = tree2ancestry(
tree, order=fixed_names)
assert fixed_names2 == fixed_names
trees.append((None, None, ancestry))
init_tree_size = len(fixed_names)
else:
trees = [(None, None, numpy.identity(3, int))]
names = self._consistentNameOrder([], order)
init_tree_size = 3
tree_size = len(names)
assert tree_size > 3
if a > tree_size:
a = tree_size
if a < 4:
a = 4
# All trees of size a-1, no need to compare them
for n in range(init_tree_size+1, a):
trees2 = []
for (err2, lengths2, ancestry) in trees:
for split_edge in range(len(ancestry)):
ancestry2 = grown(ancestry, split_edge)
trees2.append((None, None, ancestry2))
trees = trees2
init_tree_size = n
# Pre calculate how much work is to be done, for progress display
tree_count = len(trees)
total_work = 0
work_done = [0] * (init_tree_size+1)
for n in range(init_tree_size+1, tree_size+1):
evals = tree_count * (n*2-5)
total_work += evals * n
tree_count = min(k, evals)
work_done.append(total_work)
# For each tree size, grow at each edge of each tree. Keep best k.
for n in range(init_tree_size+1, tree_size+1):
evaluate = self.makeTreeScorer(names[:n])
def grown_tree(spec):
(tree_ordinal, tree, split_edge) = spec
(old_err, old_lengths, old_ancestry) = tree
ancestry = grown(old_ancestry, split_edge)
(err, lengths) = evaluate(ancestry)
return (err, tree_ordinal, split_edge, lengths, ancestry)
specs = [(i, tree, edge)
for (i,tree) in enumerate(trees)
for edge in range(n*2-5)]
candidates = ui.imap(grown_tree, specs, noun=('%s leaf tree' % n),
start=work_done[n-1]/total_work, end=work_done[n]/total_work)
best = ismallest(candidates, k)
trees = [(err, lengths, ancestry) for (err, parent_ordinal,
split_edge, lengths, ancestry) in best]
checkpointer.record((n, names[:n], trees))
results = (self.result2output(err, ancestry, lengths, names)
for (err, lengths, ancestry) in trees)
if return_all:
result = self.results2output(results)
else:
result = results.next()
return result
|