1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
#!/usr/bin/env python
# pairs_util.py
"""Provides functions related to a Pairs object
Functions to adjust Pairs in several ways (e.g. from gapped to ungapped
or from ungapped to gapped. Works on strings or Sequence objects,
on list of tuples or Pairs objects.
The module also contains several function for measuring the distance
(or similarity) between structures.
The metrics from Gardner and Giegerich 2004 are provided.
"""
from __future__ import division
from string import strip
from numpy import array, sqrt, searchsorted, flatnonzero, take, sum
from cogent.struct.rna2d import Pairs
from cogent.parse.fasta import MinimalFastaParser
__author__ = "Sandra Smit and Shandy Wikman"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Sandra Smit", "Shandy Wikman", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Sandra Smit"
__email__ = "sandra.smit@colorado.edu"
__status__ = "Production"
class PairsAdjustmentError(Exception):
pass
# ==================================================================
# Adjustment functions for Pairs objects
# ==================================================================
def adjust_base(pairs, offset):
"""Returns new Pairs with values shifted by offset
pairs: Pairs object or list of tuples
offset: integer
Adjusts the base of a pairs object or a list of pairs according to
the given offset.
There's no validation in here! It is possible negative values are
returned -> user responsibility.
This method treats all pairs as equal. It'll return a pairs object
of exactly the same length as the input, including pairs containing
None, and duplicates.
Example: adjust_base(Pairs([(2,8),(4,None)]), 2) --> [(4,10),(6,None)]
"""
if not isinstance(offset, int):
raise PairsAdjustmentError("adjust_base: offset should be integer")
result = Pairs()
for x, y in pairs:
if x is not None:
new_x = x + offset
else:
new_x = x
if y is not None:
new_y = y + offset
else:
new_y = y
result.append((new_x, new_y))
assert len(result) == len(pairs)
return result
def adjust_base_structures(structures, offset):
"""Adjusts the base of all structures by offset
structures: list of Pairs objects
offset: integer
"""
result = []
for struct in structures:
result.append(adjust_base(struct, offset))
return result
def adjust_pairs_from_mapping(pairs, mapping):
"""Returns new Pairs object with numbers adjusted according to map
pairs: list of tuples or Pairs object
mapping: dictionary containing mapping of positions from
one state to the other (e.g. ungapped to gapped)
For example:
{0: 0, 1: 1, 2: 3, 3: 4, 4: 6, 5: 7, 6: 9, 7: 10, 8: 12}
When the Pairs object corresponds to an ungapped sequence and
you want to insert gaps, use a mapping from ungapped to gapped.
When the Pairs object corresponds to a gapped sequence and you
want to degap it, use a mapping from gapped to ungapped.
"""
result = Pairs()
for x,y in pairs:
if x is None:
new_x = None
elif x not in mapping:
continue
else:
new_x = mapping[x]
if y is None:
new_y = None
elif y not in mapping:
continue
else:
new_y = mapping[y]
result.append((new_x, new_y))
return result
def delete_gaps_from_pairs(pairs, gap_list):
"""Returns Pairs object with pairs adjusted to gap_list
pairs: list of tuples or Pairs object
gap_list: list or array of gapped positions that should be removed
from the pairs object
Base pairs of which one of the partners or both of them are in
the gap list are removed. If both of them are not in the gap_list, the
numbering is adjusted according to the gap_list.
When at least one of the two pair members is in the gap_list, the
pair will be removed. The rest of the structure will be left
intact. Pairs containing None, duplicates, pseudoknots, and
conflicts will be maintained and adjusted according to the gap_list.
"""
if not gap_list:
result = Pairs()
result.extend(pairs)
return result
g = array(gap_list)
result = Pairs()
for up, down in pairs:
if up in g or down in g:
continue
else:
if up is not None:
new_up = up - g.searchsorted(up)
else:
new_up = up
if down is not None:
new_down = down - g.searchsorted(down)
else:
new_down = down
result.append((new_up, new_down))
return result
def insert_gaps_in_pairs(pairs, gap_list):
"""Adjusts numbering in pairs according to the gap list.
pairs: Pairs object
gap_list: list of integers, gap positions in a sequence
The main assumptionis that all positions in pairs correspond to
ungapped positions. If this is not true, the result will be meaningless.
"""
if not gap_list:
new = Pairs()
new.extend(pairs)
return new
ungapped = []
for idx in range(max(gap_list)+2):
if idx not in gap_list:
ungapped.append(idx)
new = Pairs()
for x,y in pairs:
if x is not None:
try:
new_x = ungapped[x]
except IndexError:
new_x = ungapped[-1] + (x-len(ungapped)+1)
else:
new_x = x
if y is not None:
try:
new_y = ungapped[y]
except IndexError:
new_y = ungapped[-1] + (y-len(ungapped)+1)
else:
new_y = y
new.append((new_x, new_y))
return new
def get_gap_symbol(seq):
"""Return gap symbol.
seq: Sequence object or plain string.
Should be able to handle cogent.core Sequence and ModelSequence object.
If the input sequence doesn't have a MolType, '-' will be returned
as default.
"""
try:
gap = seq.MolType.Alphabet.Gap
except AttributeError:
gap = '-'
return gap
def get_gap_list(gapped_seq, gap_symbol=None):
"""Return list of gapped positions.
gapped_seq: string of sequence object. Should be able to handle
old_cogent.base.sequence object, cogent.core Sequence and
ModelSequence object, or plain strings.
gap_symbol: gap symbol. Will be used for plain strings.
"""
try:
gap_list = gapped_seq.gapList() #should work for RnaSequence
except AttributeError:
try:
gap_list = flatnonzero(gapped_seq.gaps())
except AttributeError:
gap_list = flatnonzero(array(gapped_seq,'c') == gap_symbol)
try: # if gap_list is array, convert it to list
gap_list = gap_list.tolist()
except AttributeError: #already a list
pass
return gap_list
def degap_model_seq(seq):
"""Returns ungapped copy of self, not changing alphabet.
This function should actually be a method of ModelSequence. Right
now the ungapped method is broken, so this is a temporary
replacement.
"""
if seq.Alphabet.Gap is None:
return seq.copy()
d = take(seq._data, flatnonzero(seq.nongaps()))
return seq.__class__(d, Alphabet=seq.Alphabet, Name=seq.Name, \
Info=seq.Info)
def degap_seq(gapped_seq, gap_symbol=None):
"""Return ungapped copy of sequence.
Should be able to handle
old_cogent.base.sequence object, cogent.core Sequence and
ModelSequence object, or plain strings.
"""
# degap the sequence
try: #should work for old and new RnaSequence
ungapped_seq = gapped_seq.degap()
except AttributeError:
try:
ungapped_seq = degap_model_seq(gapped_seq)
except AttributeError:
ungapped_symbols = take(array(list(gapped_seq)),\
flatnonzero((array(list(gapped_seq)) != gap_symbol)))
ungapped_seq = ''.join(ungapped_symbols)
return ungapped_seq
def gapped_to_ungapped(gapped_seq, gapped_pairs):
"""Returns ungapped sequence and corresponding Pairs object
gapped_seq: string of characters (can handle Sequence, ModelSequence,
str, or old_cogent Sequence objects).
gapped_pairs: Pairs object, e.g. [(3,7),(4,6)]. The Pairs object should
correspond to the gapped sequence version.
The gap_symbol will be extracted from the sequence object. In case
the gapped_seq is a simple str, a '-' will be used as default.
"""
gap_symbol = get_gap_symbol(gapped_seq)
gap_list = get_gap_list(gapped_seq, gap_symbol)
ungapped_seq = degap_seq(gapped_seq, gap_symbol)
ungapped_pairs = delete_gaps_from_pairs(gapped_pairs, gap_list)
return ungapped_seq, ungapped_pairs
def ungapped_to_gapped(gapped_seq, ungapped_pairs):
"""Returns gapped sequence (same obj) and corresponding Pairs object
gapped_seq: string of characters (can handle Sequence, ModelSequence,
str, or old_cogent Sequence objects).
ungapped_pairs: Pairs object, e.g. [(3,7),(4,6)]. The Pairs object should
correspond to the ungapped sequence version.
The gap_symbol will be extracted from the sequence object. In case
the gapped_seq is a simple str, a '-' will be used as default.
"""
gap_symbol = get_gap_symbol(gapped_seq)
gap_list = get_gap_list(gapped_seq, gap_symbol)
gapped_pairs = insert_gaps_in_pairs(ungapped_pairs, gap_list)
return gapped_seq, gapped_pairs
# ==================================================================
# Distance/similarity measures and logical operations
# Pairs comparisons
# ==================================================================
def pairs_intersection(one, other):
"""Returns Pairs object with pairs common to one and other
one: list of tuples or Pairs object
other: list of tuples or Pairs object
one and other should map onto a sequence of the same length.
"""
pairs1 = frozenset(Pairs(one).directed()) #removes duplicates
pairs2 = frozenset(Pairs(other).directed())
return Pairs(pairs1&pairs2)
def pairs_union(one, other):
"""Returns the intersection of one and other
one: list of tuples or Pairs object
other: list of tuples or Pairs object
one and other should map onto a sequence of the same length.
"""
pairs1 = frozenset(Pairs(one).directed()) #removes duplicates
pairs2 = frozenset(Pairs(other).directed())
return Pairs(pairs1 | pairs2)
def compare_pairs(one, other):
"""Returns size of intersection divided by size of union between two Pairs
Use as a similiraty measure for comparing secondary structures.
Returns the number of base pairs common to both structures divided by
the number of base pairs that is in one or the other structure:
(A AND B)/(A OR B) (intersection/union)
one: list of tuples or Pairs object
other: list of tuples or Pairs object
"""
if one.hasConflicts() or other.hasConflicts():
raise ValueError("Can't handle conflicts in the structure""")
if not one and not other:
return 1.0
pairs1 = frozenset(Pairs(one).directed()) #removes duplicates
pairs2 = frozenset(Pairs(other).directed())
return len(pairs1 & pairs2)/len(pairs1|pairs2)
def compare_random_to_correct(one, other):
"""Returns fraction of bp in one that is in other (correct)
one: list of tuples or Pairs object
other: list of tuples or Pairs object
Note: the second structure is the one compared against (the correct
structure)
"""
if not one and not other:
return 1.0
if not one or not other:
return 0.0
pairs1 = frozenset(Pairs(one).directed()) #removes duplicates
pairs2 = frozenset(Pairs(other).directed())
return len(pairs1 & pairs2)/len(pairs1)
def compare_pairs_mapping(one, other, one_to_other):
"""Returns intersection/union given a mapping from the first pairs to second
Use in case the numbering of the two Pairs object don't correspond.
Sort of aligning two ungapped sequences and comparing their Pairs
object via a mapping.
one: list of tuples or Pairs object
other: list of tuples or Pairs object
one_to_other: mapping of positions in first pairs object to positions
in second pairs object.
For example:
# pos in first seq, base, pos in second seq
#1 U 0
#2 C 1
#3 G 2
#4 A 3
# A 4
#5 C 5
#6 C 6
#7 U
#8 G 7
mapping = {1:0, 2:1, 3:2, 4:3, 5:5, 6:6, 7:None, 8:7}
"""
if not one and not other:
return 1.0
just_in_first = 0
just_in_second = 0
in_both = 0
pairs1 = Pairs(one).directed() #removes duplicates
pairs2 = Pairs(other).directed()
for x,y in pairs1:
other_match = (one_to_other[x],one_to_other[y])
if other_match in pairs2:
in_both += 1
pairs2.remove(other_match)
else:
just_in_first += 1
just_in_second += len(pairs2)
return in_both/(just_in_first + in_both + just_in_second)
# ===========================================================
# Gardner & Giegerich 2004 metrics
# ===========================================================
ACCEPTED = dict.fromkeys(map(tuple,["GC","CG","AU","UA","GU","UG"]))
def check_structures(ref, predicted):
"""Raise ValueError if one of the two structures contains conflicts"""
if ref.hasConflicts():
raise ValueError("Reference structure contains conflicts")
if predicted.hasConflicts():
raise ValueError("Predicted structure contains conflicts")
def get_all_pairs(sequences, min_dist=4):
"""Return number of possible base pairs in the sequece
sequences: list of Sequence objects or strings
min_dist: integer, minimum distance between two members of a
base pair. Default is 4 (i.e. minimum of 3 unpaired bases in a loop)
The number of pairs is defined as all possible GC, AU, and GU pairs,
respecting the minimum distance between the two members of a
base pair.
This method returns the average number of possible base pairs over
all provided sequences.
"""
if min_dist < 1:
raise ValueError("Minimum distance should be >= 1")
if not sequences:
return 0.0
tn_counts = []
for seq in sequences:
seq_str = str(seq).upper()
seq_count = 0
#print 'xrange', range(len(seq)-min_dist)
for x in range(len(seq)-min_dist):
for y in range(x+min_dist,len(seq)):
if (seq_str[x],seq_str[y]) in ACCEPTED:
#print x,y, seq_str[x], seq_str[y], 'Y'
seq_count += 1
else:
pass
#print x,y, seq_str[x], seq_str[y], 'N'
tn_counts.append(seq_count)
return sum(tn_counts)/len(tn_counts)
def get_counts(ref, predicted, split_fp=False, sequences=None, min_dist=4):
"""Return TP, TN, FPcont, FPconf FPcomp, FN counts"""
result = dict.fromkeys(['TP','TN','FN','FP',\
'FP_INCONS','FP_CONTRA','FP_COMP'],0)
ref_set = frozenset(Pairs(ref).directed())
pred_set = frozenset(Pairs(predicted).directed())
ref_dict = dict(ref.symmetric())
pred_dict = dict(predicted.symmetric())
tp_pairs = ref_set.intersection(pred_set)
fn_pairs = ref_set.difference(pred_set)
fp_pairs = pred_set.difference(ref_set)
result['TP'] = len(tp_pairs)
result['FN'] = len(fn_pairs)
result['FP'] = len(fp_pairs)
if split_fp:
fp_incons = []
fp_contra = []
fp_comp = []
for x,y in fp_pairs:
if x in ref_dict or y in ref_dict:
#print "Conflicting: %d - %d"%(x,y)
fp_incons.append((x,y))
else:
five_prime = x
three_prime = y
contr_found = False
for idx in range(x,y+1):
if idx in ref_dict and\
(ref_dict[idx] < five_prime or\
ref_dict[idx] > three_prime):
#print "Contradicting: %d - %d"%(x,y)
contr_found = True
fp_contra.append((x,y))
break
if not contr_found:
#print "Comatible: %d - %d"%(x,y)
fp_comp.append((x,y))
result['FP_INCONS'] = len(fp_incons)
result['FP_CONTRA'] = len(fp_contra)
result['FP_COMP'] = len(fp_comp)
assert result['FP_INCONS'] + result['FP_CONTRA'] + result['FP_COMP'] ==\
result['FP']
if sequences:
num_possible_pairs = get_all_pairs(sequences, min_dist)
result['TN'] = num_possible_pairs - result['TP'] -\
result['FP_INCONS'] - result['FP_CONTRA']
return result
def extract_seqs(seqs):
"""Return list of sequences as strings.
seqs could either be:
-- a long string in fasta format:
">seq1\nACGUAGC\n>seq2\nGGUAGCG"
-- a list of lines in fasta format:
[">seq1","ACGUAGC",">seq2","GGUAGCG"]
-- a list of sequences (strings or objects):
['ACGUAGC','GGUAGCG']
"""
if isinstance(seqs, str): #assume fasta string
result = [v for (l,v) in list(MinimalFastaParser(seqs.split('\n')))]
elif isinstance(seqs, list):
seq_strings = map(strip,map(str, seqs))
if seq_strings[0].startswith('>'): #list of fasta lines
result = [v for l,v in list(MinimalFastaParser(seq_strings))]
else:
result = seq_strings
else:
raise Exception
result = [s.replace('T','U') for s in result]
return result
def sensitivity_formula(counts):
"""Return sensitivity
counts: dict of counts, containing at least TP and FN
"""
tp = counts['TP']
fn = counts['FN']
if not tp and not fn:
return 0.0
sensitivity = tp/(tp + fn)
return sensitivity
def selectivity_formula(counts):
"""Return selectivity
counts: dict of counts, containing at least TP, FP, and FP_COMP
"""
tp = counts['TP']
fp = counts['FP']
fp_comp = counts['FP_COMP']
if not tp and fp==fp_comp:
return 0.0
selectivity = tp/(tp + (fp - fp_comp))
return selectivity
def ac_formula(counts):
"""Return approximate correlation
counts: dict of counts, containing at least TP, FP, and FP_COMP
"""
sens = sensitivity_formula(counts)
sel = selectivity_formula(counts)
return (sens+sel)/2
def cc_formula(counts):
"""Return correlation coefficient
counts: dict of counts, containing at least TP, TN, FN, FP, and FP_COMP
"""
tp = counts['TP']
tn = counts['TN']
fp = counts['FP']
fn = counts['FN']
comp = counts['FP_COMP']
sens = sensitivity_formula(counts)
sel = selectivity_formula(counts)
N = tp+ (fp-comp) + fn + tn
cc = 0.0
if tp >0:
cc = (N*sens*sel-tp)/sqrt((N*sens-tp)*(N*sel-tp))
return cc
def mcc_formula(counts):
"""Return correlation coefficient
counts: dict of counts, containing at least TP, TN, FN, FP, and FP_COMP
"""
tp = counts['TP']
tn = counts['TN']
fp = counts['FP']
fn = counts['FN']
comp = counts['FP_COMP']
mcc_quotient = (tp+fp-comp)*(tp+fn)*(tn+fp-comp)*(tn+fn)
if mcc_quotient > 0:
mcc = (tp*tn-(fp-comp)*fn)/sqrt(mcc_quotient)
else:
raise ValueError("mcc_quotient <= 0: %.2f"%(mcc_quotient))
return mcc
def sensitivity(ref, predicted):
"""Return sensitivity of the predicted structure
ref: Pairs object -> reference structure (true structure)
predicted: Pairs object -> predicted structure
Formula: sensitivity = tp/(tp + fn)
tp = True positives
fn = False negatives
"""
check_structures(ref, predicted)
if not ref and not predicted:
return 1.0
elif not predicted:
return 0.0
counts = get_counts(ref, predicted)
return sensitivity_formula(counts)
def selectivity(ref,predicted):
"""Return selectivity of the predicted structure
ref: Pairs object -> reference structure (true structure)
predicted: Pairs object -> predicted structure
Formula: selectivity = tp/(tp+fp-fp_comp)
tp = True positives
fp = False positives
fp_comp = compatible fp pairs
"""
check_structures(ref, predicted)
if not ref and not predicted:
return 1.0
elif not predicted:
return 0.0
counts = get_counts(ref, predicted, split_fp=True)
return selectivity_formula(counts)
def selectivity_simple(ref, predicted):
"""Return selectivity without subtracting compatible false positives
ref: Pairs object -> reference structure (true structure)
predicted: Pairs object -> predicted structure
Formula: selectivity = tp/(tp+fp)
tp = True positives
fp = False positives
Not considering compatible false positives.
As implemented in Dowell 2004
"""
check_structures(ref, predicted)
if not ref and not predicted:
return 1.0
elif not predicted:
return 0.0
counts = get_counts(ref, predicted)
tp = counts['TP']
fp = counts['FP']
if not tp: #and fp==fp_comp:
return 0.0
selectivity = tp/(tp + fp)
return selectivity
def approximate_correlation(ref, predicted, seqs):
"""Return the approximate correlation between sensitivity and selectivity
ref: Pairs object -> reference structure (true structure)
predicted: Pairs object -> predicted structure
For the specific case of RNA structure comparisons, Matthews
correlation coefficient can be approximated by the arithmetic-mean
or geometrix-mean of sensitivity and selectivity
Formula: ac = (sensitivity+selectivity)/2
"""
check_structures(ref, predicted)
counts = get_counts(ref, predicted, split_fp=True)
return ac_formula(counts)
def correlation_coefficient(ref, predicted, seqs, min_dist=4):
"""Return correlation coefficient to relate sensitivity and selectivity
Implementation copied from compare_ct.pm
Always same result as MCC?
"""
check_structures(ref, predicted)
sequences = extract_seqs(seqs)
counts = get_counts(ref, predicted, sequences=sequences, split_fp=True,\
min_dist=min_dist)
return cc_formula(counts)
def mcc(ref, predicted, seqs, min_dist=4):
"""Return the Matthews correlation coefficient
ref: Pairs object -> reference structure (true structure)
predicted: Pairs object -> predicted structure
seqs: list of sequences, necessary to compute the number of true
negatives. See documentation of extract_seqs function for
accepted formats.
min_dist: minimum distance required between two members of a base pair.
Needed to calculate the number of true negatives.
"""
check_structures(ref, predicted)
if not ref and not predicted:
return 1.0
elif not predicted:
return 0.0
elif not seqs:
raise ValueError, 'No sequence provided!'
sequences = extract_seqs(seqs)
counts = get_counts(ref, predicted, sequences=sequences, split_fp=True,\
min_dist=min_dist)
return mcc_formula(counts)
def all_metrics(ref, predicted, seqs, min_dist=4):
"""Return dictionary containing the values of five metrics
ref: Pairs object -> reference structure (true structure)
predicted: Pairs object -> predicted structure
seqs: list of sequences, necessary to compute the number of true
negatives. See documentation of extract_seqs function for
accepted formats.
min_dist: minimum distance required between two members of a base pair.
Needed to calculate the number of true negatives.
the metrics returned are:
sensitivity, selectivity, approximate correlation,
correlation coefficient, and Matthews correlation coefficient
"""
check_structures(ref, predicted)
result = {}
if not ref and not predicted: # set all to 1.0
for i in ['SENSITIVITY','SELECTIVITY','AC','CC','MCC']:
result[i] = 1.0
return result
elif not predicted: # set all to 0.0
for i in ['SENSITIVITY','SELECTIVITY','AC','CC','MCC']:
result[i] = 0.0
return result
elif not seqs:
raise ValueError, 'No sequence provided!'
sequences = extract_seqs(seqs)
counts = get_counts(ref, predicted, sequences=sequences, split_fp=True,\
min_dist=min_dist)
result['SENSITIVITY'] = sensitivity_formula(counts)
result['SELECTIVITY'] = selectivity_formula(counts)
result['AC'] = ac_formula(counts)
result['CC'] = cc_formula(counts)
result['MCC'] = mcc_formula(counts)
return result
if __name__ == "__main__":
pass
|