1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
*******************
Accessing databases
*******************
.. Gavin Huttley, Kristian Rother, Patrick Yannul, Rob Knight, Yarden Katz
NCBI
====
EUtils is a web service offered by the NCBI to access the sequence, literature and other databases by a special format of URLs. PyCogent offers an interface to construct the URLs and retrieve the results in text format.
From Pubmed
-----------
Retrieving PubMed records from NCBI by PubMed ID
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The process for getting PubMed records by PubMed ID (PMID) is very similar to that for getting sequences. Basically, you just need to pass in the unique id associated with the article. For example, if you want to get the reference to the original PyCogent paper to see how far we've come since then, you can do this:
.. doctest::
>>> from cogent.db.ncbi import EFetch
>>> ef = EFetch(id='17708774', db='pubmed', rettype='brief')
>>> ef.read()
'\n1: Knight R et al. PyCogent: a toolkit for makin...[PMID: 17708774] \n'
If you want more information, there are other rettypes, e.g.
.. doctest::
>>> ef = EFetch(id='17708774', db='pubmed', rettype='citation')
>>> ef.read()
"\n1: Genome Biol. 2007;8(8):R171. \n\nPyCogent: a toolkit for making sense from sequence.\n\nKnight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, Eaton M,\nHamady M, Lindsay H, Liu Z, Lozupone C, McDonald D, Robeson M, Sammut R, Smit S,\nWakefield MJ, Widmann J, Wikman S, Wilson S, Ying H, Huttley GA.\n\nDepartment of Chemistry and Biochemistry, University of Colorado, Boulder,\nColorado, USA. rob@spot.colorado.edu\n\nWe have implemented in Python the COmparative GENomic Toolkit, a fully\nintegrated and thoroughly tested framework for novel probabilistic analyses of\nbiological sequences, devising workflows, and generating publication quality\ngraphics. PyCogent includes connectors to remote databases, built-in generalized\nprobabilistic techniques for working with biological sequences, and controllers\nfor third-party applications. The toolkit takes advantage of parallel\narchitectures and runs on a range of hardware and operating systems, and is\navailable under the general public license from\nhttp://sourceforge.net/projects/pycogent.\n\nPublication Types:\n Evaluation Studies\n Research Support, N.I.H., Extramural\n Research Support, Non-U.S. Gov't\n\nMeSH Terms:\n Animals\n BRCA1 Protein/genetics\n Databases, Genetic\n Genomics/methods*\n Humans\n Phylogeny\n Protein Conformation\n Proteobacteria/classification\n Proteobacteria/genetics\n Sequence Analysis/methods*\n Software*\n von Willebrand Factor/chemistry\n von Willebrand Factor/genetics\n\nSubstances:\n BRCA1 Protein\n von Willebrand Factor\n\nPMID: 17708774 [PubMed - indexed for MEDLINE]\n"
Similarly, if you want something more machine-readable (but quite a lot less human-readable), you can specify XML in the retmode:
.. doctest::
>>> ef = EFetch(id='17708774', db='pubmed', rettype='citation', retmode='xml')
>>> cite = ef.read()
>>> for line in cite.splitlines()[:5]:
... print line
...
<?xml version="1.0"?>
<!DOCTYPE PubmedArticleSet PUBLIC "-//NLM//DTD PubMedArticle, 1st January 2011//EN" "http://www.ncbi.nlm.nih.gov/entrez/query/DTD/pubmed_110101.dtd">
<PubmedArticleSet>
<PubmedArticle>
<MedlineCitation Owner="NLM" Status="MEDLINE">
Only a partial example is shown as there are quite a few lines. As with sequences, you can retrieve multiple accessions at once.
Searching for records using EUtils
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Getting records by their primary identifiers is very nice if you actually have the primary identifiers, but what if you don't? For example, what if you want to do a search based on a keyword, or have a genbank accession number rather than a gi, or want to get a range of records?
Fortunately, the more general EUtils class allows this kind of complex workflow with relatively little intervention. For example, if you want to search for articles that mention PyCogent:
.. doctest::
>>> from cogent.db.ncbi import EUtils
>>> eu = EUtils(db='pubmed', rettype='brief')
>>> res = eu['PyCogent']
>>> print res.read()
<BLANKLINE>
1: Smit S et al. From knotted to nested RNA st...[PMID: 18230758]
<BLANKLINE>
2: Knight R et al. PyCogent: a toolkit for makin...[PMID: 17708774]
<BLANKLINE>
...or perhaps you want only the ones with PyCogent in the title, in which case you can use any qualifier that NCBI supports:
.. doctest::
>>> res = eu['PyCogent[ti]']
>>> print res.read()
<BLANKLINE>
1: Knight R et al. PyCogent: a toolkit for makin...[PMID: 17708774]
<BLANKLINE>
The NCBI-supported list of field qualifiers, and lots of documentation generally on how to do pubmed queries, is `here <http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helppubmed&part=pubmedhelp>`_.
One especially useful feature is the ability to get a list of primary identifiers matching a query. You do this by setting ``rettype='uilist'`` (not idlist any more, so again you may need to update old code examples). For example:
.. doctest::
>>> eu = EUtils(db='pubmed', rettype='uilist')
>>> res = eu['PyCogent']
>>> print res.read()
18230758
17708774
<BLANKLINE>
This is especially useful when you want to do a bunch of queries (whether for journal articles, as shown here, or for sequences), combine the results, then download the actual unique records only once. You could of course do this with an incredibly complex single query, but good luck debugging that query...
For sequences
-------------
Fetching FASTA or Genpept sequences from NCBI using EFetch with GI's
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you already have a list of GI's (the numeric identifiers that are used by GenBank internally as identifers), your job is very easy: you just need to use ``EFetch`` to retrieve the corresponding records. In general, this works for any case where the identifiers you have are the primary keys, e.g. for PubMed you use the PubMed ID (see example below).
Here is an example of getting the nucleotide record that corresponds to one particular id, in this case id # 459567 (chosen arbitrarily). The record arrives as a file-like object that can be read; in this case, we are looking at each line and printing the first 40 characters.
.. doctest::
>>> from cogent.db.ncbi import EFetch
>>> ef = EFetch(id='459567', rettype='fasta')
>>> lines = ef.read().splitlines()
>>> for line in lines:
... print line[:40]
...
>gi|459567|dbj|D28543.1|HPCNS5PC Hepatit
GAGCACGACATCTACCAATGTTGCCAACTGAACCCAGAGG
GGCTTTACCTTGGTGGTCCCATGTTTAACTCGCGAGGTCA
CGGGGTTCTTCCAACCAGCATGGGCAATACCCTCACATGT
GCAGGCCTCACCAATTCTGACATGTTGGTTTGCGGAGATG
TC
<BLANKLINE>
Similarly, if your id refers to a protein record, you can get that by setting the ``rettype`` to 'gp'.
.. doctest::
>>> genpept = EFetch(id='1234567,459567', rettype='gp').read()
You'll probably notice that the lines look suspiciously like FASTA-format records. This is in fact true: the ``rettype`` parameter controls what type of record you get back. For example, if we do the same search with ``rettype='brief'``, we get.
.. doctest::
>>> from cogent.db.ncbi import EFetch
>>> ef = EFetch(id='459567', rettype='brief')
>>> lines = ef.read().splitlines()
>>> for line in lines:
... print line
...
D28543 Hepatitis C virus... [gi:459567]
The current ``rettypes`` (as of this writing on 4/14/2010) for the 'core' NCBI databases are native, fasta, gb, gp, gbwithparts, gbc, gpc, est, gss, seqid, acc, ft. Formerly, but not currently, 'genbank' was a synonym for 'gb' and 'genpept' was a synonym for 'gp': however, these synonyms no longer work and need to be fixed if you encounter them in old code. For more information check NCBI's `format documentation <http://www.ncbi.nlm.nih.gov/corehtml/query/static/efetchseq_help.html>`_.
Note that there are two separate concepts: rettype and retmode. rettype controls what kind of data you'll get, and retmode controls how the data will be formatted.
For example:
.. doctest::
>>> from cogent.db.ncbi import EFetch
>>> ef = EFetch(id='459567', rettype='fasta', retmode='text')
>>> lines = ef.read().splitlines()
>>> for line in lines:
... print line[:40]
...
>gi|459567|dbj|D28543.1|HPCNS5PC Hepatit
GAGCACGACATCTACCAATGTTGCCAACTGAACCCAGAGG
GGCTTTACCTTGGTGGTCCCATGTTTAACTCGCGAGGTCA
CGGGGTTCTTCCAACCAGCATGGGCAATACCCTCACATGT
GCAGGCCTCACCAATTCTGACATGTTGGTTTGCGGAGATG
TC
<BLANKLINE>
>>> ef = EFetch(id='459567', rettype='fasta', retmode='html')
>>> lines = ef.read().splitlines()
>>> for line in lines:
... print line[:40]
...
>gi|459567|dbj|D28543.1|HPCNS5PC Hepatit
GAGCACGACATCTACCAATGTTGCCAACTGAACCCAGAGG
GGCTTTACCTTGGTGGTCCCATGTTTAACTCGCGAGGTCA
CGGGGTTCTTCCAACCAGCATGGGCAATACCCTCACATGT
GCAGGCCTCACCAATTCTGACATGTTGGTTTGCGGAGATG
TC
<BLANKLINE>
>>> ef = EFetch(id='459567', rettype='fasta', retmode='xml')
>>> lines = ef.read().splitlines()
>>> for line in lines:
... print line[:40]
...
<?xml version="1.0"?>
<!DOCTYPE TSeqSet PUBLIC "-//NCBI//NCBI
<TSeqSet>
<TSeq>
<TSeq_seqtype value="nucleotide"/>
<TSeq_gi>459567</TSeq_gi>
<TSeq_accver>D28543.1</TSeq_accver>
<TSeq_taxid>11103</TSeq_taxid>
<TSeq_orgname>Hepatitis C virus</TSeq_
<TSeq_defline>Hepatitis C virus gene f
<TSeq_length>282</TSeq_length>
<TSeq_sequence>GAGCACGACATCTACCAATGTTG
</TSeq>
<BLANKLINE>
</TSeqSet>
You'll notice that the second case is some funny-looking html. Thanks, NCBI! This is not our fault, please don't file a bug report. To figure out whether something is actually surprising behavior at NCBI, you can always capture the command-line and run it in a web browser. You can do this by calling str() on the ``ef``, or by printing it. For example:
.. doctest::
>>> print ef
http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retmax=100&retmod...
If you paste the resulting string into your web browser and you get the same incorrect result that you get using PyCogent, you know that you should direct your support requests NCBI's way. If you want to use your own email address instead of leaving it as the default (the module developer), you can do that just by passing it in as a parameter. For example, in the unlikely event that I want NCBI to contact me instead of Mike if something goes wrong with my script, I can achieve that as follows:
.. doctest::
>>> ef = EFetch(id='459567', rettype='fasta', retmode='xml', email='rob@spot.colorado.edu')
>>> print ef
http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retmax=100&retmod...
You can also select multiple ids (pass in as comma-delimited list):
.. doctest::
>>> ef = EFetch(id='459567,459568', rettype='brief')
>>> ef.read()
'D28543 Hepatitis C virus... [gi:459567]\nBAA05896 NS5 protein [Hepa... [gi:459568]'
Retrieving GenPept files from NCBI via Eutils
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We query for just one accession to illustrate the process. A more general query can be executed by replacing ``'BAB52044`` with ``'"lysyl tRNA-synthetase"[ti] AND bacteria[orgn]'`` in the snippet below.
.. doctest::
>>> from cogent.db.ncbi import EUtils
>>> e = EUtils(numseqs=100, db='protein', rettype='gp')
>>> result = e['BAB52044']
>>> print result.read()
LOCUS BAB52044 548 aa linear BCT 16-MAY-2009
DEFINITION lysyl tRNA synthetase [Mesorhizobium loti MAFF303099].
ACCESSION BAB52044
VERSION BAB52044.1 GI:14025444
DBSOURCE accession BA000012.4
KEYWORDS .
SOURCE Mesorhizobium loti MAFF303099...
Retrieving and parsing GenBank entries
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doctest::
>>> from cogent.parse.genbank import RichGenbankParser
>>> from cogent.db.ncbi import EUtils
>>> e = EUtils(numseqs=100, db='protein', rettype='gp')
>>> result = e['"lysyl tRNA-synthetase"[ti] AND bacteria[orgn]']
>>> parser = RichGenbankParser(result.readlines())
>>> gb = [(accession, seq) for accession, seq in parser]
Printing the resulting list (``gb``) will generate output like:
.. code-block:: python
[('AAA83071', Sequence(MSEQHAQ... 505)), ('ACS40931', ...
Parsing in more detail: a single GenBank entry
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. TODO you could select these from each sequence using the getFeaturesMatching
.. doctest::
>>> from cogent.db.ncbi import EUtils
>>> from cogent.parse.genbank import RichGenbankParser
>>> e = EUtils(db="nucleotide", rettype="gb")
>>> record = e['154102'].readlines()
>>> parser = RichGenbankParser(record)
>>> accession, seq = [record for record in parser][0]
>>> accession
'STYHEMAPRF'
>>> type(seq)
<class 'cogent.core.sequence.DnaSequence'>
>>> def gene_and_cds(f):
... return f['type'] == 'CDS' and 'gene' in f
...
>>> cds_features = [f for f in seq.Info.features if gene_and_cds(f)]
>>> for cds_feature in cds_features:
... print cds_feature['gene'], cds_feature['location']
...
['hemA'] 732..1988
['prfA'] 2029..3111
Retrieving a bacterial genome file
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To obtain a full bacterial genome, run the following to get the complete *Salmonella typhimurium* genome sequence (Genbank) file. (For this documentation, we include a partial file for illustration purposes.)
.. code-block:: python
from cogent.db.ncbi import EUtils
e = EUtils(db="nucleotide", rettype="gb")
outfile = open('data/ST.genome.gb','w')
outfile.write(e['AE006468'].read())
outfile.close()
For larger files, you might want to dump them directly into a file on your hard drive rather than reading them into memory first, e.g.
.. code-block:: python
e.filename='ST.genome.gb'
f = e['AE006468']
dumps the result into the file directly, and returns you a handle to the open file where you can read the result, get the path, or do any of the other standard file operations. Now do the analysis:
.. doctest::
>>> from cogent.parse.genbank import RichGenbankParser
>>> infile = open('data/ST_genome_part.gb', 'r')
>>> parser = RichGenbankParser(infile)
>>> accession, seq = [record for record in parser][0]
>>> gene_and_cds = lambda f: f['type'] == 'CDS' and 'gene' in f
>>> gene_name = lambda f: f['gene']
>>> all_cds = [f for f in seq.Info.features if gene_and_cds(f)]
>>> for cds in sorted(all_cds, key=gene_name):
... print cds['gene'][0].ljust(6),
... print cds['protein_id'], cds['location']
...
mog ['AAL18972.1'] 8729..9319
talB ['AAL18971.1'] 7665..8618
thrA ['AAL18966.1'] 337..2799
thrB ['AAL18967.1'] 2801..3730
thrC ['AAL18968.1'] 3734..5020
thrL ['AAL18965.1'] 190..255
yaaA ['AAL18969.1'] complement(5114..5887)
yaaH ['AAL18973.1'] complement(9376..9942)
yaaJ ['AAL18970.1'] complement(5966..7396)
The EUtils modules are generic, so additional databases like OMIM can be accessed using similar mechanisms.
Retrieving PubMed abstracts from NCBI via EUtils
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doctest::
:options: +NORMALIZE_WHITESPACE
>>> from cogent.db.ncbi import EUtils
>>> e = EUtils(db='pubmed',rettype='brief')
>>> result = e['Simon Easteal AND Von Bing Yap'].read()
>>> print result
<BLANKLINE>
1: Yap VB et al. Estimates of the effect of na...[PMID: 19815689]
<BLANKLINE>
2: Schranz HW et al. Pathological rate matrices: f...[PMID: 19099591]
<BLANKLINE>
Retrieving PubMed abstracts via PMID
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doctest::
>>> from cogent.db.ncbi import EUtils
>>> e = EUtils(db='pubmed',rettype='abstract')
>>> result = e['14983078'].read()
KEGG
====
Complete genomes
----------------
*To be written.*
Orthologs
---------
*To be written.*
Functional assignments
----------------------
*To be written.*
Pathway assignments
-------------------
*To be written.*
Ensembl
=======
.. include:: ensembl.rst
PDB
===
For structures
--------------
The PDB module is very simple and basically gets a pdb coordinates file by accession number. Searches, etc. are not currently implemented because it's easier to get the pdb ids from NCBI than to scrape PDB's html results format.
.. doctest::
>>> from cogent.db.pdb import Pdb
>>> p = Pdb()
>>> result = p['3L0U']
returns a handle to a file containing the PDB coordinates (that you can, for example, pass to the PDB parser in a fashion analogous to how you pass the GenBank record above to the RichGenbankParser). See the pdb parser documentation for more info. To send results directly to a file, you can use the retrieve() method of the Pdb object.
Rfam
====
For RNA secondary structures, alignments, functions
---------------------------------------------------
*To be written.*
GoldenPath (not yet implemented)
================================
*To be written.*
Whole-genome alignments, orthologs, annotation tracks
-----------------------------------------------------
*To be written.*
.. following cleans up files
.. doctest::
:hide:
>>> from cogent.util.misc import remove_files
>>> remove_files('ST.genome.gb', error_on_missing=False)
|