1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
*****************************
Standard statistical analyses
*****************************
.. authors Tom Elliott, Gavin Huttley, Anuj Pahwa
..
following is just a list of the filenames that need to be deleted, to be
appended to after each one is called. Readers don't really need to see
this housekeeping so I'm 'hiding' this code.
.. doctest::
:hide:
>>> filenames_to_delete = []
Random Numbers
==============
Many of the code snippets in this section use random numbers. These can be obtained using functions from Python's ``random`` module, or using ``numpy.random``. To facilitate testing, the examples "seed" the random number generator, which ensures the same results each time the code is run.
.. doctest::
>>> import random
>>> random.seed(157)
>>> random.choice((-1,1))
1
>>> random.choice(range(1000))
224
>>> random.gauss(mu=50, sigma=3)
52.7668...
>>> import numpy as np
>>> np.random.seed(157)
>>> np.random.random_integers(-1,1,5)
array([-1, 1, 1, 1, 0])
For the last example, note that the range includes 0.
.. doctest::
>>> np.random.normal(loc=50,scale=3,size=2)
array([ 42.8217253 , 49.90008293])
>>> np.random.randn(3)
array([ 1.26613052, 1.59533412, 0.95612413])
Summary statistics
==================
Population mean and median
--------------------------
PyCogent's functions for statistical analysis operate on ``numpy`` arrays
.. doctest::
>>> import random
>>> import numpy as np
>>> import cogent.maths.stats.test as stats
>>> random.seed(157)
>>> nums = [random.gauss(mu=50, sigma=3) for i in range(1000)]
>>> arr = np.array(nums)
>>> stats.mean(arr)
49.9927...
but in some cases they will also accept a simple list of values
.. doctest::
>>> stats.mean(range(1,8))
4.0
>>> stats.var(range(1,8))
4.66666...
The keyword argument ``axis`` controls whether a function operates by rows (``axis=0``) or by columns (``axis=1``), or on all of the values (``axis=None``)
.. doctest::
>>> import cogent.maths.stats.test as stats
>>> import numpy as np
>>> nums = range(1,6) + [50] + range(10,60,10) + [500]
>>> arr = np.array(nums)
>>> arr.shape = (2,6)
>>> arr
array([[ 1, 2, 3, 4, 5, 50],
[ 10, 20, 30, 40, 50, 500]])
>>> stats.mean(arr, axis=0)
array([ 5.5, 11. , 16.5, 22. , 27.5, 275. ])
>>> stats.mean(arr, axis=1)
array([ 10.83333333, 108.33333333])
>>> stats.mean(arr)
59.58333...
>>> stats.median(arr, axis=0)
array([ 5.5, 11. , 16.5, 22. , 27.5, 275. ])
>>> stats.median(arr, axis=1)
array([ 3.5, 35. ])
>>> stats.median(arr)
15.0
Population variance and standard deviation
------------------------------------------
.. doctest::
>>> print stats.var(arr, axis=0)
[ 4.05000000e+01 1.62000000e+02 3.64500000e+02 6.48000000e+02
1.01250000e+03 1.01250000e+05]
>>> print stats.std(arr, axis=0)
[ 6.36396103 12.72792206 19.09188309 25.45584412 31.81980515
318.19805153]
>>> print stats.var(arr, axis=1)
[ 370.16666667 37016.66666667]
>>> print stats.std(arr, axis=1)
[ 19.23971587 192.39715868]
>>> print stats.var(arr, axis=None)
19586.6287879
>>> print stats.std(arr, axis=None)
139.952237524
The variance (and standard deviation) are unbiased
.. doctest::
>>> import numpy as np
>>> import cogent.maths.stats.test as stats
>>> arr = np.array([1,2,3,4,5])
>>> m = np.mean(arr)
>>> stats.var(arr)
2.5
>>> 1.0 * sum([(n-m)**2 for n in arr]) / (len(arr) - 1)
2.5
Distributions
=============
Binomial
--------
The binomial distribution can be used for calculating the probability of specific frequencies of states occurring in discrete data. The two alternate states are typically referred to as a success or failure. This distribution is used for sign tests.
.. doctest::
>>> import cogent.maths.stats.distribution as distr
>>> distr.binomial_low(successes=5, trials=10, prob=0.5)
0.623...
>>> distr.binomial_high(successes=5, trials=10, prob=0.5)
0.376...
>>> distr.binomial_exact(successes=5, trials=10, prob=0.5)
0.246...
Chi-square
----------
A convenience function for computing the probability of a chi-square statistic is provided at the ``stats`` top level.
.. doctest::
>>> from cogent.maths.stats import chisqprob
>>> chisqprob(3.84, 1)
0.05...
which is just a reference to the ``chi_high`` function.
.. doctest::
>>> from cogent.maths.stats.distribution import chi_high
>>> chi_high(3.84, 1)
0.05...
Getting the inverse
^^^^^^^^^^^^^^^^^^^
Given a probability we can determine the corresponding chi-square value for a given degrees-of-freedom.
.. doctest::
>>> from cogent.maths.stats.distribution import chdtri
>>> chdtri(1, 0.05)
3.84...
>>> chdtri(2, 0.05)
5.99...
Normal
------
The function ``zprob()`` takes a z-score or standard deviation and computes the fraction of the normal distribution (mean=0, std=1) which lies farther away from the mean than that value. For example, only about 4.5% of the values are more than 2 standard deviations away from the mean, so that more than 95% of the values are at least that close to the mean.
.. doctest::
>>> import cogent.maths.stats.distribution as distr
>>> for z in range(5):
... print '%s %.4f' % (z, distr.zprob(z))
...
0 1.0000
1 0.3173
2 0.0455
3 0.0027
4 0.0001
Use the functions ``z_low()`` and ``z_high()`` to compute the normal distribution in a directional fashion. Here we see that a z-score of 1.65 has a value greater than 95% of the values in the distribution, and similarly a z-score of 1.96 has a value greater than 97.5% of the values in the distribution.
.. doctest::
>>> z = 0
>>> while distr.z_low(z) < 0.95:
... z += 0.01
...
>>> z
1.6500...
>>> z = 0
>>> while distr.z_low(z) < 0.975:
... z += 0.01
...
>>> z
1.9600...
Normalizing data (as Z-scores)
==============================
The function ``z_test()`` takes a sample of values as the first argument, and named arguments for the population parameters: ``popmean`` and ``popstddev`` (with default values of 0 and 1), and returns the z-score and its probability.
In this example, we grab a sample from a population with ``mean=50`` and ``std=3``, and call ``z_test()`` with the population mean specified as 50 and the ``popstddev`` assuming its default value of 1:
.. Uses the parametric standard deviation
.. doctest::
>>> import numpy as np
>>> import cogent.maths.stats.test as stats
>>> np.random.seed(157)
>>> arr = np.random.normal(loc=50,scale=3,size=1000)
>>> round(stats.mean(arr), 1)
49.9...
>>> round(stats.std(arr), 1)
3.1...
>>> z, prob = stats.z_test(arr, popmean=50.0)
>>> print z
-3.08...
.. todo
TE: I think the above needs more explanation. What does this have to do with a Z-score, as in Z = (arr - stats.mean(arr))/stats.std(arr)?
Resampling based statistics
===========================
The Jackknife
-------------
This is a data resampling based approach to estimating the confidence in measures of location (like the mean). The method is based on omission of one member of a sample and recomputing the statistic of interest. This measures the influence of individual observations on the sample and also the confidence in the statistic.
The ``Jackknife`` class relies on our ability to handle a set of indexes for sub-setting our data and re-computing our statistic. The client code must be able to take a indices and generate a new statistic.
We demo using the jackknife the estimate of mean GC% for an alignment. We first write a factory function to compute the confidence in the mean GC% for an alignment by sampling specific columns.
.. doctest::
>>> def CalcGc(aln):
... def calc_gc(indices):
... new = aln.takePositions(indices)
... probs = new.getMotifProbs()
... gc = sum(probs[b] for b in 'CG')
... total = sum(probs[b] for b in 'ACGT')
... return gc / total
... return calc_gc
We then create an instance of this factory function with a specific alignment.
.. doctest::
>>> from cogent import LoadSeqs, DNA
>>> aln = LoadSeqs('data/test.paml', moltype=DNA)
>>> calc_gc = CalcGc(aln)
We now create a ``Jackknife`` instance, passing it the ``calc_gc`` instance we have just made and obtain the sampling statistics. We specify how many elements we're interested in (in this case, the positions in the alignment).
.. doctest::
>>> from cogent.maths.stats.jackknife import JackknifeStats
>>> jk = JackknifeStats(len(aln), calc_gc)
>>> print jk.SampleStat
0.4766...
>>> print jk.SummaryStats
Summary Statistics
===============================================
Sample Stat Jackknife Stat Standard Error
-----------------------------------------------
0.4767 0.4767 0.0584
-----------------------------------------------
We also display the sub-sample statistics.
.. doctest::
>>> print jk.SubSampleStats
Subsample Stats
============
i Stat-i
------------
0 0.4678
1 0.4678
2 0.4847
3 0.4814...
.. note:: You can provide a custom index generation function that omits groups of observations, for instance. This can be assigned to the ``gen_index`` argument of the ``Jackknife`` constructor.
Permutations
============
.. this is really a numpy features
Random
------
.. doctest::
>>> from numpy.random import permutation as perm
>>> import numpy as np
>>> np.random.seed(153)
>>> arr = np.array(range(5))
>>> for i in range(3):
... print perm(arr)
...
[2 1 3 0 4]
[0 3 2 4 1]
[4 0 1 2 3]
Ordered
-------
*To be written.*
Differences in means
====================
Consider a single sample of 50 value:
.. doctest::
>>> import numpy as np
>>> import cogent.maths.stats.test as stats
>>> np.random.seed(1357)
>>> nums1 = np.random.normal(loc=45,scale=10,size=50)
Although we don't know the population values for the mean and standard deviation for this sample, we can evaluate the probability that the sample could have been drawn from some population with known values, as shown above in Normalizing data (as Z-scores).
If we have a second sample, whose parent population mean and standard deviation are also unknown:
.. doctest::
>>> nums2 = np.random.normal(loc=50,scale=10,size=50)
Suppose we believe (before we see any data) that the mean of the first population is different than the second but we don't know in which direction the change lies, we estimate the standard deviation. We use the standard error of the mean as an estimate for how close the mean of sample 2 is to the mean of its parent population (and vice-versa).
.. doctest::
>>> mean_nums2 = stats.mean(nums2)
>>> sd_nums2 = stats.std(nums2)
>>> se_nums2 = sd_nums2 / np.sqrt(len(nums2))
>>> se_nums2
1.1113...
>>> mean_nums1 = stats.mean(nums1)
>>> mean_nums1
46.5727...
>>> mean_nums2
50.3825...
>>> mean_nums1 < mean_nums2 - 1.96 * se_nums2
True
t-Tests
=======
Small sample sizes can be handled by the use of t-tests. The function ``t_two_sample()`` is used for two independent samples.
.. doctest::
>>> subsample1 = nums1[:5]
>>> [str(round(n,2)) for n in subsample1]
['49.25', '38.87', '47.06', '44.49', '43.73']
>>> stats.mean(subsample1)
44.67901...
>>> subsample2 = nums2[:5]
>>> [str(round(n,2)) for n in subsample2]
['51.57', '40.6', '49.62', '46.69', '59.34']
>>> stats.mean(subsample2)
49.56494...
>>> t, prob = stats.t_two_sample(subsample1,subsample2)
>>> t
-1.3835...
>>> prob
0.20388...
The two sample means are not significantly different.
If there is one small sample and we want to ask whether it is unlikely to have come from a population with a known mean, use the function ``t_one_sample()``
.. doctest::
>>> import cogent.maths.stats.test as stats
>>> arr = [52.6, 51.3, 49.8]
>>> t, prob = stats.t_one_sample(arr, popmean=48, tails='high')
>>> t
3.99681...
>>> prob
0.02863...
For related samples (pre- and post-treatment), use the function ``t_paired()``
.. doctest::
>>> import cogent.maths.stats.test as stats
>>> pre = [52.6, 51.3, 49.8]
>>> post = [62.6, 75.0, 65.2]
>>> t, prob = stats.t_paired(pre, post, tails='low')
>>> t
-4.10781...
>>> prob
0.02723...
Sign test
=========
This is essentially just a test using the binomial distribution where the probability of success = 0.5.
.. doctest::
>>> from cogent.maths.stats.test import sign_test
>>> sign_test(40, 100)
0.056...
Differences in proportions
==========================
*To be written.*
Association
===========
We create some data for testing for association.
.. doctest::
>>> import numpy as np
>>> np.random.seed(13)
>>> x_nums = range(1,11)
>>> error = [1.5 * random.random() for i in range(len(x_nums))]
>>> error = [e * random.choice((-1,1)) for e in error]
>>> y_nums = [(x * 0.5) + e for x, e in zip(x_nums, error)]
>>> x_array = np.array(x_nums)
>>> y_array = np.array(y_nums)
We then compute Kendall's tau and associated probability, which tests the null hypothesis that x and y are not associated.
.. doctest::
>>> from cogent.maths.stats.test import kendall_correlation
>>> tau, prob = kendall_correlation(x_array, y_array)
>>> print tau
0.688...
>>> print prob
0.00468...
Correlation
===========
For this example, we generate y-values as one-half the x-value plus a bit of random error
.. doctest::
>>> import numpy as np
>>> np.random.seed(13)
>>> x_array = np.arange(1,11)
>>> error = np.random.normal(size=10)
>>> y_array = x_array * 0.5 + error
>>> x_array
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> [str(round(n,2)) for n in y_array]
['-0.21', '1.75', '1.46', '2.45', '3.85', '3.53', '4.85', '4.86', '5.98', '3.95']
The function ``correlation()`` returns the Pearson correlation between x and y, as well as its significance
.. doctest::
>>> import cogent.maths.stats.test as stats
>>> r, prob = stats.correlation(x_array, y_array)
>>> r
0.8907...
>>> prob
0.0005...
The function ``regress()`` returns the coefficients to the regression line "y=ax+b"
.. doctest::
>>> slope, y_intercept = stats.regress(x_array, y_array)
>>> slope
0.5514...
>>> y_intercept
0.2141...
Calculate the R^2 value for the regression of x and y
.. doctest::
>>> R_squared = stats.regress_R2(x_array, y_array)
>>> R_squared
0.7934...
And finally, the residual error for each point from the linear regression
.. doctest::
>>> error = stats.regress_residuals(x_array, y_array)
>>> error = [str(round(e,2)) for e in error]
>>> error
['-0.98', '0.44', '-0.41'...
Differences in variances
========================
*To be written.*
Chi-Squared test
================
.. TODO pick a biological example, perhaps sequence nucleotide composition? Codon usage for a particular amino acid?
Calculus class data (from Grinstead and Snell, Introduction to Probability). There seems to be a disparity in the number of 'A' grades awarded when broken down by student gender. As input to the function ``chi_square_from_Dict2D()`` we need a ``Dict2D`` object containing the observed counts that has been processed by ``calc_contingency_expected()`` to add the expected counts for each element of the table
``Expected = row_total x column_total / overall_total``
.. doctest::
>>> from cogent.util.dict2d import Dict2D
>>> import cogent.maths.stats.test as stats
>>> F_grades = {'A':37,'B':63,'C':47,'F':5}
>>> M_grades = {'A':56,'B':60,'C':43,'F':8}
>>> grades = {'F':F_grades,'M':M_grades}
>>> data = Dict2D(grades)
>>> data
{'M': {'A': 56...
>>> OE_data = stats.calc_contingency_expected(data)
>>> OE_data
{'M': {'A': [56, 48.686...
>>> test, chi_high = stats.chi_square_from_Dict2D(OE_data)
>>> test
4.12877...
>>> chi_high
0.24789...
Nearly 25% of the time we would expect a Chi-squared statistic as extreme as this one or more (with df = 3), so the result is not significant.
Goodness-of-fit calculation with the same data
.. doctest::
>>> g_val, prob = stats.G_fit_from_Dict2D(OE_data)
>>> g_val
4.1337592429166437
>>> prob
0.76424854978813872
Scatterplots
============
In this example, we generate the error as above, but separately from the x-value, and subsequently transform using matrix multiplication
.. doctest::
>>> import random
>>> import numpy as np
>>> import cogent.maths.stats.test as stats
>>> random.seed(13)
>>> x_nums = range(1,11)
>>> error = [1.5 * random.random() for i in range(len(x_nums))]
>>> error = [e * random.choice((-1,1)) for e in error]
>>> arr = np.array(x_nums + error)
>>> arr.shape = (2, len(x_nums))
>>> arr
array([[ 1. , 2. , 3. , 4. ,
5. , 6. , 7. , 8. ,
9. , 10. ],
[ 0.38851274, -1.02788699, -1.02612288, -1.27400424,
0.27858626, 0.34583791, -0.22073988, -0.3377444 ,
-1.1010354 , 0.19531953]])
We can use a transformation matrix to rotate the points
.. doctest::
>>> from math import sqrt
>>> z = 1.0/sqrt(2)
>>> t = np.array([[z,-z],[z,z]])
>>> rotated_x, rotated_y = np.dot(t,arr)
The plotting code uses matplotlib_.
.. doctest::
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.scatter(arr[0],arr[1],s=250,color='b',marker='s')
<matplotlib.collections.RegularPolyCollection object...
>>> ax.scatter(rotated_x,rotated_y,s=250,color='r',marker='o')
<matplotlib.collections.CircleCollection object...
>>> plt.axis('equal')
(0.0, 12.0, -2.0, 8.0)
Plot the least squares regression lines too
.. doctest::
>>> slope, y_intercept = stats.regress(rotated_x, rotated_y)
>>> slope
0.9547989732316251
>>> max_x = 10
>>> ax.plot([0, max_x],[y_intercept, max_x * slope + y_intercept],
... linewidth=4.0, color='k')
...
[<matplotlib.lines.Line2D object...
>>> slope, y_intercept = stats.regress(arr[0],arr[1])
>>> ax.plot([0, max_x],[y_intercept, max_x * slope + y_intercept],
... linewidth=4.0, color='0.6')
...
[<matplotlib.lines.Line2D object...
>>> plt.grid(True)
>>> plt.savefig('scatter_example.pdf')
(If you want to plot the lines under the points, specify ``zorder=n`` to the plot commands, where ``zorder`` for the lines < ``zorder`` for the points).
..
Possibly split these out into "Visualizing data"
.. doctest::
:hide:
>>> filenames_to_delete.append('scatter_example.pdf')
Histograms
==========
.. doctest::
:hide:
>>> plt.clf() # because the plot gets screwed up by operations above
.. doctest::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> plt.clf()
>>> mu, sigma = 100, 15
>>> x = mu + sigma*np.random.randn(10000)
>>> n, bins, patches = plt.hist(x, 60, normed=1, facecolor='0.75')
add a "best fit" line
.. doctest::
>>> import matplotlib.mlab as mlab
>>> y = mlab.normpdf( bins, mu, sigma)
>>> l = plt.plot(bins, y, 'r--', linewidth=3)
>>> plt.grid(True)
>>> plt.savefig('hist_example.png')
.. doctest::
:hide:
>>> filenames_to_delete.append('hist_example.png')
Heat Maps
=========
Representing numbers as colors is a powerful data visualization technique. This example does not actually use any functionality from PyCogent, it simply highlights a convenient matplotlib_ method for constructing a heat map.
.. doctest::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> data = [i * 0.01 for i in range(100)]
>>> data = np.array(data)
>>> data.shape = (10,10)
The plot code
.. doctest::
>>> fig = plt.figure()
>>> plt.hot()
>>> plt.pcolormesh(data)
<matplotlib.collections.QuadMesh object ...
>>> plt.colorbar()
<matplotlib.colorbar.Colorbar instance ...
>>> plt.savefig('heatmap_example.png')
.. doctest::
:hide:
>>> filenames_to_delete.append('heatmap_example.png')
>>> from cogent.util.misc import remove_files
>>> remove_files(filenames_to_delete, error_on_missing=False)
.. _matplotlib: http://matplotlib.sourceforge.net/
|