File: useful_utilities.rst

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (691 lines) | stat: -rw-r--r-- 19,457 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
****************
Useful Utilities
****************

.. authors, Daniel McDonald, Gavin Huttley, Antonio Gonzalez Pena, Rob Knight

Using PyCogent's optimisers for your own functions
==================================================

You have a function that you want to maximise/minimise. The parameters in your function may be bounded (must lie in a specific interval) or not. The cogent optimisers can be applied to these cases. The ``Powell`` (a local optimiser) and ``SimulatedAnnealing`` (a global optimiser) classes in particular have had their interfaces standardised for such use cases. We demonstrate for a very simple function below.

We write a simple factory function that uses a provided value for omega to compute the squared deviation from an estimate, then use it to create our optimisable function.

.. doctest::
    
    >>> import numpy
    >>> def DiffOmega(omega):
    ...     def omega_from_S(S):
    ...         omega_est = S/(1-numpy.e**(-1*S))
    ...         return abs(omega-omega_est)**2
    ...     return omega_from_S
    >>> omega = 0.1
    >>> f = DiffOmega(omega)

We then import the minimise function and use it to minimise the function, obtaining the fit statistic and the associated estimate of S. Note that we provide lower and upper bounds (which are optional) and an initial guess for our parameter of interest (``S``).

.. doctest::
    
    >>> from cogent.maths.optimisers import minimise, maximise
    >>> S = minimise(f,  # the function
    ...     xinit=1.0, # the initial value
    ...     bounds=(-100, 100), # [lower,upper] bounds for the parameter
    ...     local=True) # just local optimisation, not Simulated Annealing
    >>> assert 0.0 <= f(S) < 1e-6
    >>> print 'S=%.4f' % S
    S=-3.6150

The minimise and maximise functions can also handle multidimensional optimisations, just make xinit (and the bounds) lists rather than scalar values.

Fitting a function to a giving set of x and y values
====================================================

Giving a set of values for ``x`` and ``y`` fit a function ``func`` that has ``n_params`` using simplex iterations to minimize the error between the model ``func`` to fit and the given values. Here we fitting an exponential function.

.. doctest::
    :hide:
    
    >>> from numpy.random import seed
    >>> seed(42) # so the results are not volatile


.. doctest::

    >>> from numpy import array, arange, exp
    >>> from numpy.random import rand, seed
    >>> from cogent.maths.fit_function import fit_function
    >>> # creating x values
    >>> x = arange(-1,1,.01)
    >>>
    >>> # defining our fitting function
    >>> def f(x,a):
    ...     return exp(a[0]+x*a[1])
    ...
    >>> # getting our real y
    >>> y = f(x,a=[2,5])
    >>>
    >>> # creating our noisy y
    >>> y_noise = y + rand(len(y))*5
    >>>
    >>> # fitting our noisy data to the function using 1 iteration
    >>> params = fit_function(x, y_noise, f, 2, 1)
    >>> params
    array([ 2.0399908 ,  4.96109191])
    >>>
    >>> # fitting our noisy data to the function using 1 iteration
    >>> params = fit_function(x, y_noise, f, 2, 5)
    >>> params
    array([ 2.0399641 ,  4.96112469])

Cartesian products
==================

*To be written.*

.. cogent.util.transform

Miscellaneous functions
=======================

.. index:: cogent.util.misc

Identity testing
^^^^^^^^^^^^^^^^

Basic ``identity`` function to avoid having to test explicitly for None

.. doctest::

    >>> from cogent.util.misc import identity
    >>> my_var = None
    >>> if identity(my_var):
    ...   print "foo"
    ... else:
    ...   print "bar"
    ... 
    bar

One-line if/else statement
^^^^^^^^^^^^^^^^^^^^^^^^^^

Convenience function for performing one-line if/else statements. This is similar to the C-style ternary operator:

.. doctest::

    >>> from cogent.util.misc import if_
    >>> result = if_(4 > 5, "Expression is True", "Expression is False")
    >>> result
    'Expression is False'

However, the value returned is evaluated, but not called. For instance:

.. doctest::

    >>> from cogent.util.misc import if_
    >>> def foo():
    ...   print "in foo"
    ... 
    >>> def bar():
    ...   print "in bar"
    ...
    >>> if_(4 > 5, foo, bar)
    <function bar at...

Force a variable to be iterable
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This support method will force a variable to be an iterable, allowing you to guarantee that the variable will be safe for use in, say, a ``for`` loop.

.. doctest::

    >>> from cogent.util.misc import iterable
    >>> my_var = 10
    >>> for i in my_var:
    ...   print "will not work"
    ... 
    Traceback (most recent call last):
    TypeError: 'int' object is not iterable
    >>> for i in iterable(my_var):
    ...   print i
    ... 
    10

Obtain the index of the largest item
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To determine the index of the largest item in any iterable container, use ``max_index``:

.. doctest::

    >>> from cogent.util.misc import max_index
    >>> l = [5,4,2,2,6,8,0,10,0,5]
    >>> max_index(l)
    7

.. note:: Will return the lowest index of duplicate max values

Obtain the index of the smallest item
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To determine the index of the smallest item in any iterable container, use ``min_index``:

.. doctest::

    >>> from cogent.util.misc import min_index
    >>> l = [5,4,2,2,6,8,0,10,0,5]
    >>> min_index(l)
    6

.. note:: Will return the lowest index of duplicate min values

Remove a nesting level
^^^^^^^^^^^^^^^^^^^^^^

To flatten a 2-dimensional list, you can use ``flatten``:

.. doctest::

    >>> from cogent.util.misc import flatten
    >>> l = ['abcd','efgh','ijkl']
    >>> flatten(l)
    ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l']

Convert a nested tuple into a list
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Conversion of a nested ``tuple`` into a ``list`` can be performed using ``deep_list``:

.. doctest::

    >>> from cogent.util.misc import deep_list
    >>> t = ((1,2),(3,4),(5,6))
    >>> deep_list(t)
    [[1, 2], [3, 4], [5, 6]]

Simply calling ``list`` will not convert the nested items:

.. doctest::

    >>> list(t)
    [(1, 2), (3, 4), (5, 6)]

Convert a nested list into a tuple
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Conversion of a nested ``list`` into a ``tuple`` can be performed using ``deep_list``:

.. doctest::

    >>> from cogent.util.misc import deep_tuple
    >>> l = [[1,2],[3,4],[5,6]]
    >>> deep_tuple(l)
    ((1, 2), (3, 4), (5, 6))

Simply calling ``tuple`` will not convert the nested items:

.. doctest::

    >>> tuple(l)
    ([1, 2], [3, 4], [5, 6])

Testing if an item is between two values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Same as: min <= number <= max, although it is quickly readable within code

.. doctest::

    >>> from cogent.util.misc import between
    >>> between((3,5),4)
    True
    >>> between((3,5),6)
    False

Return combinations of items
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``Combinate`` returns all k-combinations of items. For instance:

.. doctest::

    >>> from cogent.util.misc import combinate
    >>> list(combinate([1,2,3],0))
    [[]]
    >>> list(combinate([1,2,3],1))
    [[1], [2], [3]]
    >>> list(combinate([1,2,3],2))
    [[1, 2], [1, 3], [2, 3]]
    >>> list(combinate([1,2,3],3))
    [[1, 2, 3]]

Save and load gzip'd files
^^^^^^^^^^^^^^^^^^^^^^^^^^

These handy methods will ``cPickle`` an object and automagically gzip the file. You can also then reload the object at a later date.

.. doctest::

    >>> from cogent.util.misc import gzip_dump, gzip_load
    >>> class foo(object):
    ...   some_var = 5
    ... 
    >>> bar = foo()
    >>> bar.some_var = 10
    >>> # gzip_dump(bar, 'test_file')
    >>> # new_bar = gzip_load('test_file')
    >>> # isinstance(new_bar, foo)

.. note:: The above code does work, but cPickle won't write out within doctest

Curry a function
^^^^^^^^^^^^^^^^

curry(f,x)(y) = f(x,y) or = lambda y: f(x,y). This was modified from the Python Cookbook. Docstrings are also carried over.

.. doctest::

    >>> from cogent.util.misc import curry
    >>> def foo(x,y):
    ...   """Some function"""
    ...   return x + y
    ... 
    >>> bar = curry(foo, 5)
    >>> print bar.__doc__
     curry(foo,5)
    == curried from foo ==
     Some function
    >>> bar(10)
    15

Test to see if an object is iterable
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Perform a simple test to see if an object supports iteration

.. doctest::

    >>> from cogent.util.misc import is_iterable
    >>> can_iter = [1,2,3,4]
    >>> cannot_iter = 1.234
    >>> is_iterable(can_iter)
    True
    >>> is_iterable(cannot_iter)
    False

Test to see if an object is a single char
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Perform a simple test to see if an object is a single character

.. doctest::

    >>> from cogent.util.misc import is_char
    >>> class foo: 
    ...   pass
    ... 
    >>> is_char('a')
    True
    >>> is_char('ab')
    False
    >>> is_char(foo())
    False

Flatten a deeply nested iterable
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To flatten a deeply nested iterable, use ``recursive_flatten``. This method supports multiple levels of nesting, and multiple iterable types

.. doctest::

    >>> from cogent.util.misc import recursive_flatten
    >>> l = [[[[1,2], 'abcde'], [5,6]], [7,8], [9,10]]
    >>> recursive_flatten(l)
    [1, 2, 'a', 'b', 'c', 'd', 'e', 5, 6, 7, 8, 9, 10]

Test to determine if ``list`` of ``tuple``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Perform a simple check to see if an object is not a list or a tuple

.. doctest::

    >>> from cogent.util.misc import not_list_tuple
    >>> not_list_tuple(1)
    True
    >>> not_list_tuple([1])
    False
    >>> not_list_tuple('ab')
    True

Unflatten items to row-width
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Unflatten an iterable of items to a specified row-width. This does reverse the effect of ``zip`` as the lists produced are not interleaved.

.. doctest::

    >>> from cogent.util.misc import unflatten
    >>> l = [1,2,3,4,5,6,7,8]
    >>> unflatten(l,1)
    [[1], [2], [3], [4], [5], [6], [7], [8]]
    >>> unflatten(l,2)
    [[1, 2], [3, 4], [5, 6], [7, 8]]
    >>> unflatten(l,3)
    [[1, 2, 3], [4, 5, 6]]
    >>> unflatten(l,4)
    [[1, 2, 3, 4], [5, 6, 7, 8]]

Unzip items
^^^^^^^^^^^

Reverse the effects of a ``zip`` method, i.e. produces separate lists from tuples

.. doctest::

    >>> from cogent.util.misc import unzip
    >>> l = ((1,2),(3,4),(5,6))
    >>> unzip(l)
    [[1, 3, 5], [2, 4, 6]]

Select items in order
^^^^^^^^^^^^^^^^^^^^^

Select items in a specified order

.. doctest::

    >>> from cogent.util.misc import select
    >>> select('ea', {'a':1,'b':5,'c':2,'d':4,'e':6})
    [6, 1]
    >>> select([0,4,8], 'abcdefghijklm')
    ['a', 'e', 'i']

Obtain the index sort order
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Obtain the indices for items in sort order. This is similar to numpy.argsort, but will work on any iterable that implements the necessary ``cmp`` methods

.. doctest::

    >>> from cogent.util.misc import sort_order
    >>> sort_order([4,2,3,5,7,8])
    [1, 2, 0, 3, 4, 5]
    >>> sort_order('dcba')
    [3, 2, 1, 0]

Find overlapping pattern occurrences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Find all of the overlapping occurrences of a pattern within a text

.. doctest::

    >>> from cogent.util.misc import find_all
    >>> text = 'aaaaaaa'
    >>> pattern = 'aa'
    >>> find_all(text, pattern)
    [0, 1, 2, 3, 4, 5]
    >>> text = 'abababab'
    >>> pattern = 'aba'
    >>> find_all(text, pattern)
    [0, 2, 4]

Find multiple pattern occurrences
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Find all of the overlapping occurrences of multiple patterns within a text. Returned indices are sorted, each index is the start position of one of the patterns

.. doctest::

    >>> from cogent.util.misc import find_many
    >>> text = 'abababcabab'
    >>> patterns = ['ab','abc']
    >>> find_many(text, patterns)
    [0, 2, 4, 4, 7, 9]

Safely remove a trailing underscore
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

'Unreserve' a mutation of Python reserved words

.. doctest::

    >>> from cogent.util.misc import unreserve
    >>> unreserve('class_')
    'class'
    >>> unreserve('class')
    'class'

Create a case-insensitive iterable
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Create a case-insensitive object, for instance, if you want the key 'a' and 'A' to point to the same item in a dict

.. doctest::

    >>> from cogent.util.misc import add_lowercase
    >>> d = {'A':5,'B':6,'C':7,'foo':8,42:'life'}
    >>> add_lowercase(d)
    {'A': 5, 'a': 5, 'C': 7, 'B': 6, 42: 'life', 'c': 7, 'b': 6, 'foo': 8}

Extract data delimited by differing left and right delimiters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Extract data from a line that is surrounded by different right/left delimiters

.. doctest::

    >>> from cogent.util.misc import extract_delimited
    >>> line = "abc[def]ghi"
    >>> extract_delimited(line,'[',']')
    'def'

Invert a dictionary
^^^^^^^^^^^^^^^^^^^

Get a dictionary with the values set as keys and the keys set as values

.. doctest::

    >>> from cogent.util.misc import InverseDict
    >>> d = {'some_key':1,'some_key_2':2}
    >>> InverseDict(d)
    {1: 'some_key', 2: 'some_key_2'}

.. note:: An arbitrary key will be set if there are multiple keys with the same value

Invert a dictionary with multiple keys having the same value
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Get a dictionary with the values set as keys and the keys set as values. Can handle the case where multiple keys point to the same values

.. doctest::

    >>> from cogent.util.misc import InverseDictMulti
    >>> d = {'some_key':1,'some_key_2':1}
    >>> InverseDictMulti(d)
    {1: ['some_key_2', 'some_key']}
    >>> 

Get mapping from sequence item to all positions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``DictFromPos`` returns the positions of all items seen within a sequence. This is useful for obtaining, for instance, nucleotide counts and positions

.. doctest::

    >>> from cogent.util.misc import DictFromPos
    >>> seq = 'aattggttggaaggccgccgttagacg'
    >>> DictFromPos(seq)
    {'a': [0, 1, 10, 11, 22, 24], 'c': [14, 15, 17, 18, 25], 't': [2, 3, 6, 7, 20, 21], 'g': [4, 5, 8, 9, 12, 13, 16, 19, 23, 26]}

Get the first index of occurrence for each item in a sequence
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``DictFromFirst`` will return the first location of each item in a sequence

.. doctest::
    
    >>> from cogent.util.misc import DictFromFirst
    >>> seq = 'aattggttggaaggccgccgttagacg'
    >>> DictFromFirst(seq)
    {'a': 0, 'c': 14, 't': 2, 'g': 4}

Get the last index of occurrence for each item in a sequence
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``DictFromLast`` will return the last location of each item in a sequence

.. doctest::

    >>> from cogent.util.misc import DictFromLast
    >>> seq = 'aattggttggaaggccgccgttagacg'
    >>> DictFromLast(seq)
    {'a': 24, 'c': 25, 't': 21, 'g': 26}

Construct a distance matrix lookup function
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Automatically construct a distance matrix lookup function. This is useful for maintaining flexibility about whether a function is being computed or if a lookup is being used

.. doctest::

    >>> from cogent.util.misc import DistanceFromMatrix
    >>> from numpy import array
    >>> m = array([[1,2,3],[4,5,6],[7,8,9]])
    >>> f = DistanceFromMatrix(m)
    >>> f(0,0)
    1
    >>> f(1,2)
    6

Get all pairs from groups
^^^^^^^^^^^^^^^^^^^^^^^^^

Get all of the pairs of items present in a list of groups. A key will be created (i,j) iff i and j share a group

.. doctest::

    >>> from cogent.util.misc import PairsFromGroups
    >>> groups = ['ab','xyz']
    >>> PairsFromGroups(groups)
    {('a', 'a'): None, ('b', 'b'): None, ('b', 'a'): None, ('x', 'y'): None, ('z', 'x'): None, ('y', 'y'): None, ('x', 'x'): None, ('y', 'x'): None, ('z', 'y'): None, ('x', 'z'): None, ('a', 'b'): None, ('y', 'z'): None, ('z', 'z'): None}

Check class types
^^^^^^^^^^^^^^^^^

Check an object against base classes or derived classes to see if it is acceptable

.. doctest::

    >>> from cogent.util.misc import ClassChecker
    >>> class not_okay(object):
    ...   pass
    ... 
    >>> no = not_okay()
    >>> class okay(object):
    ...   pass
    ... 
    >>> o = okay()
    >>> class my_dict(dict):
    ...   pass
    ... 
    >>> md = my_dict()
    >>> cc = ClassChecker(str, okay, dict)
    >>> o in cc
    True
    >>> no in cc
    False
    >>> 5 in cc
    False
    >>> {'a':5} in cc
    True
    >>> 'asasas' in cc
    True
    >>> md in cc
    True

Delegate to a separate object
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Delegate object method calls, properties and variables to the appropriate object. Useful to combine multiple objects together while assuring that the calls will go to the correct object.

.. doctest::

    >>> from cogent.util.misc import Delegator
    >>> class ListAndString(list, Delegator):
    ...   def __init__(self, items, string):
    ...     Delegator.__init__(self, string)
    ...     for i in items:
    ...       self.append(i)
    ... 
    >>> ls = ListAndString([1,2,3], 'ab_cd')
    >>> len(ls)
    3
    >>> ls[0]
    1
    >>> ls.upper()
    'AB_CD'
    >>> ls.split('_')
    ['ab', 'cd']

Wrap a function to hide from a class
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Wrap a function to hide it from a class so that it isn't a method. 

.. doctest::

    >>> from cogent.util.misc import FunctionWrapper
    >>> f = FunctionWrapper(str)
    >>> f
    <cogent.util.misc.FunctionWrapper object at ...
    >>> f(123)
    '123'

Construct a constrained container
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Wrap a container with a constraint. This is useful for enforcing that the data contained is valid within a defined context. PyCogent provides a base ``ConstrainedContainer`` which can be used to construct user-defined constrained objects. PyCogent also provides ``ConstrainedString``, ``ConstrainedList``, and ``ConstrainedDict``. These provided types fully cover the builtin types while staying integrated with the ``ConstrainedContainer``.

Here is a light example of the ``ConstrainedDict``

.. doctest::

    >>> from cogent.util.misc import ConstrainedDict
    >>> d = ConstrainedDict({'a':1,'b':2,'c':3}, Constraint='abc')
    >>> d
    {'a': 1, 'c': 3, 'b': 2}
    >>> d['d'] = 5
    Traceback (most recent call last):
    ConstraintError: Item 'd' not in constraint 'abc'

PyCogent also provides mapped constrained containers for each of the default types provided, ``MappedString``, ``MappedList``, and ``MappedDict``. These behave the same, except that they map a mask onto ``__contains__`` and ``__getitem__``

.. doctest::

    >>> def mask(x):
    ...   return str(int(x) + 3)
    ... 
    >>> from cogent.util.misc import MappedString
    >>> s = MappedString('12345', Constraint='45678', Mask=mask)
    >>> s
    '45678'
    >>> s + '123'
    '45678456'
    >>> s + '9'
    Traceback (most recent call last):
    ConstraintError: Sequence '9' doesn't meet constraint

Check the location of an application
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Determine if an application is available on a system

.. doctest::

    >>> from cogent.util.misc import app_path
    >>> app_path('ls')
    '/bin/ls'
    >>> app_path('does_not_exist')
    False