1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
import os
from cogent import DNA
from cogent.util.unit_test import TestCase, main
from cogent.db.ensembl.host import HostAccount, get_ensembl_account
from cogent.db.ensembl.util import convert_strand
from cogent.db.ensembl.genome import Genome
from cogent.db.ensembl.sequence import _assemble_seq
from cogent.db.ensembl.util import asserted_one
__author__ = "Gavin Huttley, Hua Ying"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Gavin Huttley", "hua Ying"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "Gavin.Huttley@anu.edu.au"
__status__ = "alpha"
Release = 67
if 'ENSEMBL_ACCOUNT' in os.environ:
args = os.environ['ENSEMBL_ACCOUNT'].split()
host, username, password = args[0:3]
kwargs = {}
if len(args) > 3:
kwargs['port'] = int(args[3])
account = HostAccount(host, username, password, **kwargs)
else:
account = get_ensembl_account(release=Release)
class GenomeTestBase(TestCase):
human = Genome(Species="human", Release=Release, account=account)
mouse = Genome(Species="mouse", Release=Release, account=account)
rat = Genome(Species="rat", Release=Release, account=account)
macaq = Genome(Species="macaque", Release=Release, account=account)
gorilla = Genome(Species="gorilla", Release=Release, account=account)
brca2 = human.getGeneByStableId(StableId="ENSG00000139618")
class TestGenome(GenomeTestBase):
def test_other_features(self):
"""should correctly return record for ENSESTG00000035043"""
est = self.human.getEstMatching(StableId='ENSESTG00000035043')
direct = list(est)[0]
ests = self.human.getFeatures(feature_types='est', CoordName=8,
Start=121470000, End=121600000)
stable_ids = [est.StableId for est in ests]
self.assertContains(stable_ids, direct.StableId)
def test_genome_comparison(self):
"""different genome instances with same CoreDb connection are equal"""
h2 = Genome(Species='human', Release=Release, account=account)
self.assertEquals(self.human, h2)
def test_make_location(self):
"""should correctly make a location for an entire chromosome"""
loc = self.human.makeLocation(CoordName=1)
self.assertEquals(len(loc), 249250621)
def test_get_region(self):
"""should return a generic region that extracts correct sequence"""
chrom = 1
Start = 11137
End = Start+20
region = self.human.getRegion(CoordName=chrom, Start=Start, End=End,
ensembl_coord=True)
self.assertEquals(region.Location.Start, Start-1)
self.assertEquals(region.Location.End, End)
self.assertEquals(region.Location.CoordName, str(chrom))
self.assertEquals(region.Location.CoordType, 'chromosome')
self.assertEquals(region.Seq, 'ACCTCAGTAATCCGAAAAGCC')
def test_get_assembly_exception_region(self):
"""should return correct sequence for region with an assembly
exception"""
##old:chrY:57767412-57767433; New: chrY:59358024-59358045
region = self.human.getRegion(CoordName = "Y", Start = 59358024,
End = 59358045, Strand = 1, ensembl_coord = True)
self.assertEquals(str(region.Seq), 'CGAGGACGACTGGGAATCCTAG')
def test_no_assembly(self):
"""return N's for coordinates with no assembly"""
krat = Genome('Kangaroo rat', Release=58)
Start=24385
End=Start+100
region = krat.getRegion(CoordName='scaffold_13754', Start=Start,
End=End)
self.assertEquals(str(region.Seq), 'N' * (End-Start))
def test_getting_annotated_seq(self):
"""a region should return a sequence with the correct annotation"""
new_loc = self.brca2.Location.resized(-100, 100)
region = self.human.getRegion(region=new_loc)
annot_seq = region.getAnnotatedSeq(feature_types='gene')
gene_annots = annot_seq.getAnnotationsMatching('gene')
self.assertEquals(gene_annots[0].Name, self.brca2.Symbol)
def test_correct_feature_type_id_cache(self):
"""should obtain the feature type identifiers without failure"""
self.assertNotEquals(self.human._feature_type_ids.CpGisland, None)
def test_strand_conversion(self):
"""should consistently convert strand info"""
self.assertEquals(convert_strand(None), 1)
self.assertEquals(convert_strand(-1), -1)
self.assertEquals(convert_strand(1), 1)
self.assertEquals(convert_strand('-'), -1)
self.assertEquals(convert_strand('+'), 1)
self.assertEquals(convert_strand(-1.0), -1)
self.assertEquals(convert_strand(1.0), 1)
def test_pool_connection(self):
"""excercising ability to specify pool connection"""
dog = Genome(Species="dog", Release=Release, account=account,
pool_recycle=1000)
def test_gorilla(self):
"""should correctly return a gorilla gene"""
self.gorilla = Genome(Species="gorilla", Release=Release, account=account)
gene = self.gorilla.getGeneByStableId('ENSGGOG00000005730')
self.assertEquals(str(gene.Seq[:10]), 'TGGGAGTCCA')
def test_diff_strand_contig_chrom(self):
"""get correct sequence when contig and chromosome strands differ"""
gene = self.gorilla.getGeneByStableId('ENSGGOG00000001953')
cds = gene.CanonicalTranscript.Cds
self.assertEquals(str(cds), 'ATGGCCCAGGATCTCAGCGAGAAGGACCTGTTGAAGATG'
'GAGGTGGAGCAGCTGAAGAAAGAAGTGAAAAACACAAGAATTCCGATTTCCAAAGCGGGAAAGGAAAT'
'CAAAGAGTACGTGGAGGCCCAAGCAGGAAACGATCCTTTTCTCAAAGGCATCCCTGAGGACAAGAATC'
'CCTTCAAGGAGAAAGGTGGCTGTCTGATAAGCTGA')
def test_get_distinct_biotype(self):
"""Genome instance getDistinct should work on all genomes"""
for genome in self.gorilla, self.human, self.mouse, self.rat, self.macaq:
biotypes = genome.getDistinct('biotype')
class TestGene(GenomeTestBase):
def _eval_brca2(self, brca2):
"""tests all attributes correctly created"""
self.assertEquals(brca2.Symbol.lower(), 'brca2')
self.assertEquals(brca2.StableId, 'ENSG00000139618')
self.assertEquals(brca2.BioType.lower(), 'protein_coding')
self.assertContains(brca2.Description.lower(), 'breast cancer')
self.assertEquals(brca2.Status, 'KNOWN')
self.assertEquals(brca2.CanonicalTranscript.StableId,
'ENST00000380152')
# note length can change between genome builds
self.assertGreaterThan(len(brca2), 83700)
transcript = brca2.getMember('ENST00000380152')
self.assertEquals(transcript.getCdsLength(),len(transcript.Cds))
def test_get_genes_by_stable_id(self):
"""if get gene by stable_id, attributes should be correctly
constructed"""
self._eval_brca2(self.brca2)
def test_get_exons(self):
"""transcript should return correct exons for brca2"""
transcript = self.brca2.getMember('ENST00000380152')
self.assertEquals(len(transcript.TranslatedExons), 26)
self.assertEquals(len(transcript.Cds), 3419*3)
self.assertEquals(len(transcript.ProteinSeq), 3418)
def test_translated_exons(self):
"""should correctly translate a gene with 2 exons but 1st exon
transcribed"""
gene = self.mouse.getGeneByStableId(StableId='ENSMUSG00000036136')
transcript = gene.getMember('ENSMUST00000041133')
self.assertTrue(len(transcript.ProteinSeq) > 0)
# now one on the - strand
gene = self.mouse.getGeneByStableId(StableId='ENSMUSG00000045912')
transcript = gene.Transcripts[0]
self.assertTrue(len(transcript.ProteinSeq) > 0)
def test_failed_ensembl_annotation(self):
"""we demonstrate a failed annotation by ensembl"""
# I'm including this to demonstrate that Ensembl coords are
# complex. This case has a macaque gene which we correctly
# infer the CDS boundaries for according to Ensembl, but the CDS
# length is not divisible by 3.
gene = self.macaq.getGeneByStableId(StableId='ENSMMUG00000001551')
transcript = gene.getMember('ENSMMUT00000002194')
# the following works because we enforce the length being divisble by 3
# in producing ProteinSeq
prot_seq = transcript.ProteinSeq
# BUT if you work off the Cds you will need to slice the CDS to be
# divisible by 3 to get the same protein sequence
l = transcript.getCdsLength()
trunc_cds = transcript.Cds[: l - (l % 3)]
prot_seq = trunc_cds.getTranslation()
self.assertEquals(str(prot_seq),
'MPSSPLRVAVVCSSNQNRSMEAHNILSKRGFSVRSFGTGTHVKLPGPAPDKPNVYDFKTT'\
'YDQMYNDLLRKDKELYTQNGILHMLDRNKRIKPRPERFQNCKDLFDLILTCEERVY')
def test_exon_phases(self):
"""correctly identify phase for an exon"""
stable_id = 'ENSG00000171408'
gene = self.human.getGeneByStableId(StableId=stable_id)
exon1 = gene.Transcripts[1].Exons[0]
# first two bases of codon missing
self.assertEquals(exon1.PhaseStart, 2)
# last two bases of codon missing
self.assertEquals(exon1.PhaseEnd, 1)
# can translate the sequence if we take those into account
seq = exon1.Seq[1:-1].getTranslation()
self.assertEquals(str(seq), 'HMLSKVGMWDFDIFLFDRLTN')
def test_cds_from_outofphase(self):
"""return a translatable Cds sequence from out-of-phase start"""
# canonical transcript phase end_phase
# ENSG00000111729 ENST00000229332 -1 -1
# ENSG00000177151 ENST00000317450 0 -1
# ENSG00000249624 ENST00000433395 1 -1
# ENSG00000237276 ENST00000442385 2 -1
# ENSG00000167744 ENST00000301411 -1 0
canon_ids = 'ENSG00000111729 ENSG00000177151 ENSG00000237276 ENSG00000167744 ENSG00000251184'.split()
for index, stable_id in enumerate(canon_ids):
gene = self.human.getGeneByStableId(StableId=stable_id)
transcript = gene.CanonicalTranscript
prot_seq = transcript.ProteinSeq
def test_gene_transcripts(self):
"""should return multiple transcripts"""
stable_id = 'ENSG00000012048'
gene = self.human.getGeneByStableId(StableId=stable_id)
self.assertTrue(len(gene.Transcripts) > 1)
# .. and correctly construct the Cds and location
for transcript in gene.Transcripts:
self.assertTrue(transcript.getCdsLength()>0)
self.assertEquals(transcript.Location.CoordName,'17')
def test_get_longest_cds_transcript2(self):
"""should correctly return transcript with longest cds"""
# ENSG00000123552 is protein coding, ENSG00000206629 is ncRNA
for stable_id, max_cds_length in [('ENSG00000123552', 2445),
('ENSG00000206629', 164)]:
gene = self.human.getGeneByStableId(StableId=stable_id)
ts = gene.getLongestCdsTranscript()
self.assertEquals(len(ts.Cds), max_cds_length)
self.assertEquals(ts.getCdsLength(), max(gene.getCdsLengths()))
def test_get_longest_cds_transcript1(self):
"""should correctly return transcript with longest cds"""
stable_id = 'ENSG00000178591'
gene = self.human.getGeneByStableId(StableId=stable_id)
ts = gene.getLongestCdsTranscript()
self.assertEquals(ts.getCdsLength(), max(gene.getCdsLengths()))
def test_rna_transcript_cds(self):
"""should return a Cds for an RNA gene too"""
rna_gene = self.human.getGeneByStableId(StableId='ENSG00000210049')
self.assertTrue(rna_gene.Transcripts[0].getCdsLength() > 0)
def test_gene_annotation(self):
"""should correctly annotated a sequence"""
annot_seq = self.brca2.getAnnotatedSeq(feature_types='gene')
gene_annots = annot_seq.getAnnotationsMatching('gene')
self.assertEquals(gene_annots[0].Name, self.brca2.Symbol)
def test_get_by_symbol(self):
"""selecting a gene by it's HGNC symbol should correctly populate all
specified attributes"""
results = self.human.getGenesMatching(Symbol="BRCA2")
for snp in results:
self._eval_brca2(snp)
def test_get_by_symbol_synonym(self):
"""return correct gene if provide a synonymn, rather than symbol"""
synonym = 'FOXO1A'
gene = list(self.human.getGenesMatching(Symbol=synonym))[0]
self.assertEquals(gene.Symbol, 'FOXO1')
def test_get_by_description(self):
"""if get by description, all attributes should be correctly
constructed"""
description='breast cancer 2'
results = list(self.human.getGenesMatching(Description=description))
self.assertEquals(len(results), 1)
self._eval_brca2(results[0])
def test_get_member(self):
"""should return correct exon and translated exon"""
transcript = self.brca2.getMember('ENST00000380152')
# just returns the first
exon_id = 'ENSE00001484009'
exon = transcript.getMember(exon_id)
trans_exon = transcript.getMember(exon_id,'TranslatedExons')
self.assertEquals(exon.StableId, exon_id)
self.assertEquals(trans_exon.StableId, exon_id)
# we check we got Exon in the first call and TranslatedExon in the
# second using the fact that the Exons entry is longer than the
# TranslatedExons one
self.assertGreaterThan(len(exon), len(trans_exon))
def test_get_by_biotype(self):
results = list(self.human.getGenesMatching(BioType='Mt_tRNA', like=False))
self.assertEquals(len(results), 22)
results = list(self.human.getGenesMatching(BioType='Mt_tRNA', like=True))
self.assertEquals(len(results), 607)
def test_get_by_decsr_biotype(self):
"""combining the description and biotype should return a result"""
results = list(self.human.getGenesMatching(BioType="protein_coding",
Description="cancer"))
self.assertTrue(len(results) > 50)
def test_variant(self):
"""variant attribute correctly constructed"""
self.assertTrue(len(self.brca2.Variants) > 880)
def test_get_gene_by_stable_id(self):
"""should correctly handle getting gene by stable_id"""
stable_id = 'ENSG00000012048'
gene = self.human.getGeneByStableId(StableId=stable_id)
self.assertEquals(gene.StableId, stable_id)
# if invalid stable_id, should just return None
stable_id = 'ENSG00000XXXXX'
gene = self.human.getGeneByStableId(StableId=stable_id)
self.assertEquals(gene, None)
def test_intron_number(self):
"""number of introns should be correct"""
for gene_id, transcript_id, exp_number in [
('ENSG00000227268', 'ENST00000445946', 0),
('ENSG00000132199', 'ENST00000319815', 8),
('ENSG00000132199', 'ENST00000383578', 15)]:
gene = asserted_one(self.human.getGenesMatching(StableId=gene_id))
transcript = asserted_one(
[t for t in gene.Transcripts if t.StableId==transcript_id])
if exp_number == 0:
self.assertEqual(transcript.Introns, None)
else:
self.assertEqual(len(transcript.Introns), exp_number)
def test_intron(self):
"""should get correct Intron sequence, regardless of strand"""
# IL2 is on - strand, IL13 is on + strand, both have three introns
IL2_exp_introns = [
(1, 123377358, 123377448, 'gtaagtatat', 'actttcttag'),
(2, 123375008, 123377298, 'gtaagtacaa', 'attattctag'),
(3, 123373017,123374864, 'gtaaggcatt', 'tcttttatag')]
IL13_exp_introns = [
(1, 131994052, 131995109, 'gtgagtgtcg', 'gctcccacag'),
(2, 131995163, 131995415, 'gtaaggacct', 'ctccccacag'),
(3, 131995520, 131995866, 'gtaaggcatc', 'tgtcctgcag')]
for symbol, stable_id, exp_introns in [
('IL2', 'ENST00000226730', IL2_exp_introns),
('IL13', 'ENST00000304506', IL13_exp_introns)]:
gene = asserted_one(self.human.getGenesMatching(Symbol=symbol))
strand = gene.Location.Strand
transcript = asserted_one(
[t for t in gene.Transcripts if t.StableId==stable_id])
introns = transcript.Introns
self.assertEqual(len(introns), len(exp_introns))
idx = 0
for intron in introns:
loc = intron.Location
start, end = loc.Start, loc.End
seq = str(intron.Seq)
exp_rank, exp_start, exp_end, exp_seq5, \
exp_seq3 = exp_introns[idx]
self.assertEqual(loc.Strand, strand)
# test the order using rank
self.assertEqual(intron.Rank, exp_rank)
# test position
self.assertEqual(start, exp_start)
self.assertEqual(end, exp_end)
# test sequence
self.assertEqual(seq[:10], exp_seq5.upper())
self.assertEqual(seq[-10:], exp_seq3.upper())
idx += 1
def test_intron_annotation(self):
"""sequences annotated with Introns should return correct seq"""
for symbol, stable_id, rank, exp_seq5, exp_seq3 in [
('IL2', 'ENST00000226730', 1, 'gtaagtatat', 'actttcttag'),
('IL13', 'ENST00000304506', 3, 'gtaaggcatc', 'tgtcctgcag')]:
gene = asserted_one(self.human.getGenesMatching(Symbol=symbol))
seq = gene.getAnnotatedSeq(feature_types='gene')
intron = asserted_one(seq.getAnnotationsMatching('intron',
'%s-%d'%(stable_id, rank)))
intron_seq = str(seq.getRegionCoveringAll(intron).getSlice())
self.assertEqual(intron_seq[:10], exp_seq5.upper())
self.assertEqual(intron_seq[-10:], exp_seq3.upper())
class TestVariation(GenomeTestBase):
snp_names = ['rs34213141', 'rs12791610', 'rs10792769', 'rs11545807', 'rs11270496']
snp_nt_alleles = ['G/A', 'C/T', 'A/G', 'C/A', 'CAGCTCCAGCTC/-']
snp_aa_alleles = ['G/R', 'P/L', 'Y/C', "V/F", "GAGAV/V"]
snp_effects = ['non_synonymous_codon']*3+[['2KB_upstream_variant', '5KB_upstream_variant', 'non_synonymous_codon']]+['non_synonymous_codon']
snp_nt_len = [1, 1, 1, 1, 12]
map_weights = [1,1,1,1,1]
snp_flanks = [
('CTGAGGTGAGCCAGCGTTGGAGCTGTTTTTCCTTTCAGTATGAATTCCACAAGGAAATCATCTCAGGAGGAAGGGCTCATACTTGGATCCAGAAAATATCAACATAGCCAAAGAAAAACAATCAAGACATACCTCCAGGAGCTGTGTAACAGCAACCGGAAAGAGAAACAATGGTGTGTTCCTATGTGGGATATAAAGAGCCGGGGCTCAGGGGGCTCCACACCTGCACCTCCTTCTCACCTGCTCCTCTACCTGCTCCACCCTCAATCCACCAGAACCATGGGCTGCTGTGGCTGCTCC',
'GAGGCTGTGGCTCCAGCTGTGGAGGCTGTGACTCCAGCTGTGGGAGCTGTGGCTCTGGCTGCAGGGGCTGTGGCCCCAGCTGCTGTGCACCCGTCTACTGCTGCAAGCCCGTGTGCTGCTGTGTTCCAGCCTGTTCCTGCTCTAGCTGTGGCAAGCGGGGCTGTGGCTCCTGTGGGGGCTCCAAGGGAGGCTGTGGTTCTTGTGGCTGCTCCCAGTGCAGTTGCTGCAAGCCCTGCTGTTGCTCTTCAGGCTGTGGGTCATCCTGCTGCCAGTGCAGCTGCTGCAAGCCCTACTGCTCCC'),
('GAAAATATCAACATAGCCAAAGAAAAACAATCAAGACATACCTCCAGGAGCTGTGTAACAGCAACCGGAAAGAGAAACAATGGTGTGTTCCTATGTGGGATATAAAGAGCCGGGGCTCAGGGGGCTCCACACCTGCACCTCCTTCTCACCTGCTCCTCTACCTGCTCCACCCTCAATCCACCAGAACCATGGGCTGCTGTGGCTGCTCCGGAGGCTGTGGCTCCAGCTGTGGAGGCTGTGACTCCAGCTGTGGGAGCTGTGGCTCTGGCTGCAGGGGCTGTGGCCCCAGCTGCTGTGCAC',
'CGTCTACTGCTGCAAGCCCGTGTGCTGCTGTGTTCCAGCCTGTTCCTGCTCTAGCTGTGGCAAGCGGGGCTGTGGCTCCTGTGGGGGCTCCAAGGGAGGCTGTGGTTCTTGTGGCTGCTCCCAGTGCAGTTGCTGCAAGCCCTGCTGTTGCTCTTCAGGCTGTGGGTCATCCTGCTGCCAGTGCAGCTGCTGCAAGCCCTACTGCTCCCAGTGCAGCTGCTGTAAGCCCTGTTGCTCCTCCTCGGGTCGTGGGTCATCCTGCTGCCAATCCAGCTGCTGCAAGCCCTGCTGCTCATCCTC'),
('ATCAACATAGCCAAAGAAAAACAATCAAGACATACCTCCAGGAGCTGTGTAACAGCAACCGGAAAGAGAAACAATGGTGTGTTCCTATGTGGGATATAAAGAGCCGGGGCTCAGGGGGCTCCACACCTGCACCTCCTTCTCACCTGCTCCTCTACCTGCTCCACCCTCAATCCACCAGAACCATGGGCTGCTGTGGCTGCTCCGGAGGCTGTGGCTCCAGCTGTGGAGGCTGTGACTCCAGCTGTGGGAGCTGTGGCTCTGGCTGCAGGGGCTGTGGCCCCAGCTGCTGTGCACCCGTCT',
'CTGCTGCAAGCCCGTGTGCTGCTGTGTTCCAGCCTGTTCCTGCTCTAGCTGTGGCAAGCGGGGCTGTGGCTCCTGTGGGGGCTCCAAGGGAGGCTGTGGTTCTTGTGGCTGCTCCCAGTGCAGTTGCTGCAAGCCCTGCTGTTGCTCTTCAGGCTGTGGGTCATCCTGCTGCCAGTGCAGCTGCTGCAAGCCCTACTGCTCCCAGTGCAGCTGCTGTAAGCCCTGTTGCTCCTCCTCGGGTCGTGGGTCATCCTGCTGCCAATCCAGCTGCTGCAAGCCCTGCTGCTCATCCTCAGGCTG'),
('GCTGAAGAAACCATTTCAAACAGGATTGGAATAGGGAAACCCGGCACTCAGCTCGGCGCAAGCCGGCGGTGCCTTCAGACTAGAGAGCCTCTCCTCCGGTGCGCTGCAAGTAGGGCCTCGGCTCGAGGTCAACATTCTAGTTGTCCAGCGCTCCCTCTCCGGCACCTCGGTGAGGCTAGTTGACCCGACAGGCGCGGATCATGAGCAGCTGCAGGAGAATGAAGAGCGGGGACGTAATGAGGCCGAACCAGAGCTCCCGAGTCTGCTCCGCCAGCTTCTGGCACAACAGCATCTCGAAGA',
'GAACTTGAGACTCAGGACCGTAAGTACCCAGAAAAGGCGGAGCACCGCCAGCCGCTTCTCTCCATCCTGGAAGAGGCGCACGGACACGATGGTGGTGAAGTAGGTGCTGAGCCCGTCAGCGGCGAAGAAAGGCACGAACACGTTCCACCAGGAGAGGCCCGGGACCAGGCCATCCACACGCAGTGCCAGCAGCACAGAGAACACCAACAGGGCCAGCAGGTGCACGAAGATCTCGAAGGTGGCGAAGCCTAGCCACTGCACCAGCTCCCGGAGCGAGAAGAGCATCGCGCCCGTTGAGCG')]
def test_get_variation_by_symbol(self):
"""should return correct snp when query genome by symbol"""
# supplement this test with some synonymous snp's, where they have no
# peptide alleles
for i in range(4):
snp = list(self.human.getVariation(Symbol=self.snp_names[i]))[0]
self.assertEquals(snp.Symbol, self.snp_names[i])
self.assertEquals(snp.Effect, self.snp_effects[i])
self.assertEquals(snp.Alleles, self.snp_nt_alleles[i])
self.assertEquals(snp.MapWeight, self.map_weights[i])
def test_num_alleles(self):
"""should correctly infer the number of alleles"""
for i in range(4):
snp = list(self.human.getVariation(Symbol=self.snp_names[i]))[0]
self.assertEquals(len(snp), self.snp_nt_len[i])
def test_get_peptide_alleles(self):
"""should correctly infer the peptide alleles"""
for i in range(4):
snp = list(self.human.getVariation(Symbol=self.snp_names[i]))[0]
if snp.Effect == 'INTRONIC':
continue
self.assertEquals(snp.PeptideAlleles, self.snp_aa_alleles[i])
def test_get_peptide_location(self):
"""should return correct location for aa variants"""
index = self.snp_names.index('rs11545807')
snp = list(self.human.getVariation(Symbol=self.snp_names[index]))[0]
self.assertEquals(snp.TranslationLocation, 95)
def test_validation_status(self):
"""should return correct validation status"""
def func(x):
if type(x) == str or x is None:
x = [x]
return set(x)
data = (('rs34213141', set(['freq']), func),
('rs12791610', set(['cluster', 'freq']), func),
('rs10792769', set(['cluster', 'freq', '1000Genome',
'hapmap', 'doublehit']), func))
for name, status, conv in data:
snp = list(self.human.getVariation(Symbol=name))[0]
self.assertTrue(status <= conv(snp.Validation))
def test_get_flanking_seq(self):
"""should correctly get the flanking sequence"""
for i in range(4): # only have flanking sequence for 3
snp = list(self.human.getVariation(Symbol=self.snp_names[i]))[0]
self.assertEquals(snp.FlankingSeq, self.snp_flanks[i])
def test_variation_seq(self):
"""should return the sequence for a Variation snp if asked"""
snp = list(self.human.getVariation(Symbol=self.snp_names[0]))[0]
self.assertContains(snp.Alleles, str(snp.Seq))
def test_get_validation_condition(self):
"""simple test of SNP validation status"""
snp_status = [('rs94', False), ('rs90', True)]
for symbol, status in snp_status:
snp = list(self.human.getVariation(Symbol=symbol, validated=True))
self.assertEquals(snp != [], status)
def test_allele_freqs(self):
"""exercising getting AlleleFreq data"""
snp = list(self.human.getVariation(Symbol='rs34213141'))[0]
expect = set([('A', '0.0303'), ('G', '0.9697')])
allele_freqs = snp.AlleleFreqs
allele_freqs = set((a, '%.4f' % f )
for a, f in allele_freqs.getRawData(['allele', 'freq']))
self.assertTrue(expect.issubset(allele_freqs))
class TestFeatures(GenomeTestBase):
def setUp(self):
self.igf2 = self.human.getGeneByStableId(StableId='ENSG00000167244')
def test_CpG_island(self):
"""should return correct CpG islands"""
CpGislands = self.human.getFeatures(region=self.igf2,
feature_types='CpG')
expected_stats = [(630, 757), (652, 537), (3254, 3533)]
obs_stats = [(int(island.Score), len(island)) \
for island in CpGislands]
obs_stats.sort()
self.assertTrue(set(expected_stats) & set(obs_stats) != set())
def test_get_multiple_features(self):
"""should not fail to get multiple feature types"""
regions =\
self.human.getFeatures(feature_types=['repeat','gene','cpg'],
CoordName=1, Start=869936,End=901867)
for region in regions:
pass
def test_repeats(self):
"""should correctly return a repeat"""
loc = self.igf2.Location.resized(-1000, 1000)
repeats = list(self.human.getFeatures(
region=loc, feature_types='repeat'))
self.assertTrue(len(repeats) >= 4)
def test_genes(self):
"""should correctly identify igf2 within a region"""
loc = self.igf2.Location.resized(-1000, 1000)
genes = self.human.getFeatures(region=loc, feature_types='gene')
symbols = [g.Symbol.lower() for g in genes]
self.assertContains(symbols, self.igf2.Symbol.lower())
def test_other_genes(self):
"""docstring for est_other_genes"""
mouse = self.mouse.getRegion(CoordName='5', Start=150791005,
End=150838512, Strand='-')
rat = self.rat.getRegion(CoordName='12', Start=4282534, End=4324019,
Strand='+')
for region in [mouse, rat]:
features = region.getFeatures(feature_types=['gene'])
ann_seq = region.getAnnotatedSeq(feature_types='gene')
genes = ann_seq.getAnnotationsMatching('gene')
self.assertTrue(genes != [])
def test_get_variation_feature(self):
"""should correctly return variation features within a region"""
snps = self.human.getFeatures(feature_types='variation',
region=self.brca2)
# snp coordname, start, end should satsify constraints of brca2 loc
c = 0
loc = self.brca2.Location
for snp in snps:
self.assertEquals(snp.Location.CoordName, loc.CoordName)
self.assertTrue(loc.Start < snp.Location.Start < loc.End)
c += 1
if c == 2:
break
def test_gene_feature_data_correct(self):
"""should apply gene feature data in a manner consistent with strand
and the Cogent sequence annotations slice should return the same
result"""
plus = list(self.human.getFeatures(feature_types='gene',
CoordName=13,
Start=31787610,
End=31871820))[0]
minus = plus.Location.copy()
minus.Strand *= -1
minus = self.human.getRegion(region = minus)
# get Sequence
plus_seq = plus.getAnnotatedSeq(feature_types='gene')
minus_seq = minus.getAnnotatedSeq(feature_types='gene')
# the seqs should be the rc of each other
self.assertEquals(str(plus_seq), str(minus_seq.rc()))
# the Cds, however, from the annotated sequences should be identical
plus_cds = plus_seq.getAnnotationsMatching('CDS')[0]
minus_cds = minus_seq.getAnnotationsMatching('CDS')[0]
self.assertEquals(str(plus_cds.getSlice()),str(minus_cds.getSlice()))
def test_other_feature_data_correct(self):
"""should apply CpG feature data in a manner consistent with strand"""
human = self.human
coord = dict(CoordName=11, Start=2165124,End=2165724)
exp_coord = dict(CoordName=11, Start=2165136, End=2165672)
exp_loc = human.getRegion(Strand=1, ensembl_coord=True, **exp_coord)
exp = exp_loc.Seq
ps_feat = human.getRegion(Strand=1, **coord)
ms_feat = human.getRegion(Strand=-1, **coord)
ps_seq = ps_feat.getAnnotatedSeq(feature_types='CpG')
ps_cgi = ps_seq.getAnnotationsMatching('CpGisland')[0]
self.assertEquals(ps_feat.Seq, ms_feat.Seq.rc())
self.assertEquals(ps_cgi.getSlice().rc(), exp)
ms_seq = ms_feat.getAnnotatedSeq(feature_types='CpG')
ms_cgi = ms_seq.getAnnotationsMatching('CpGisland')[0]
self.assertEquals(ms_cgi.getSlice(), ps_cgi.getSlice())
def test_other_repeat(self):
"""should apply repeat feature data in a manner consistent with strand"""
coord=dict(CoordName=13, Start=32890200, End=32890500)
ps_repeat = self.human.getRegion(Strand=1, **coord)
ms_repeat = self.human.getRegion(Strand=-1, **coord)
exp = DNA.makeSequence('CTTACTGTGAGGATGGGAACATTTTACAGCTGTGCTG'\
'TCCAAACCGGTGCCACTAGCCACATTAAGCACTCGAAACGTGGCTAGTGCGACTAGAGAAGAGGA'\
'TTTTCATACGATTTAGTTTCAATCACGCTAACCAGTGACGCGTGGCTAGTGG')
self.assertEquals(ms_repeat.Seq, ps_repeat.Seq.rc())
ps_annot_seq = ps_repeat.getAnnotatedSeq(feature_types='repeat')
ms_annot_seq = ms_repeat.getAnnotatedSeq(feature_types='repeat')
ps_seq = ps_annot_seq.getAnnotationsMatching('repeat')[0]
ms_seq = ms_annot_seq.getAnnotationsMatching('repeat')[0]
self.assertEquals(ms_seq.getSlice(), ps_seq.getSlice())
self.assertEquals(ps_seq.getSlice(), exp)
def test_get_features_from_nt(self):
"""should correctly return the encompassing gene from 1nt"""
snp = list(self.human.getVariation(Symbol='rs34213141'))[0]
gene=list(self.human.getFeatures(feature_types='gene',region=snp))[0]
self.assertEquals(gene.StableId, 'ENSG00000254997')
class TestAssembly(TestCase):
def test_assemble_seq(self):
"""should correctly fill in a sequence with N's"""
expect = DNA.makeSequence("NAAAAANNCCCCCNNGGGNNN")
frags = ["AAAAA","CCCCC","GGG"]
positions = [(11, 16), (18, 23), (25, 28)]
self.assertEqual(_assemble_seq(frags, 10, 31, positions), expect)
positions = [(1, 6), (8, 13), (15, 18)]
self.assertEqual(_assemble_seq(frags, 0, 21, positions), expect)
# should work with:
# start matches first frag start
expect = DNA.makeSequence("AAAAANNCCCCCNNGGGNNN")
positions = [(0, 5), (7, 12), (14, 17)]
self.assertEqual(_assemble_seq(frags, 0, 20, positions), expect)
# end matches last frag_end
expect = DNA.makeSequence("NAAAAANNCCCCCNNGGG")
positions = [(11, 16), (18, 23), (25, 28)]
self.assertEqual(_assemble_seq(frags, 10, 28, positions), expect)
# both start and end matched
expect = DNA.makeSequence("AAAAANNCCCCCNNGGG")
positions = [(10, 15), (17, 22), (24, 27)]
self.assertEqual(_assemble_seq(frags, 10, 27, positions), expect)
# one frag
expect = DNA.makeSequence(''.join(frags))
positions = [(10, 23)]
self.assertEqual(_assemble_seq([''.join(frags)],10,23,positions),
expect)
if __name__ == "__main__":
main()
|