File: test_codon_usage.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (245 lines) | stat: -rw-r--r-- 9,884 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#/usr/bin/env python
"""Tests of the codon usage graphs.

Note: currently, this must be invoked manually because all the output is
graphical. Expects to be invoked from the test directory.
"""
from cogent.maths.stats.cai.adaptor import data_from_file, adapt_p12, \
    adapt_p123gc, adapt_cai_p3, adapt_cai_histogram, adapt_fingerprint, \
    adapt_pr2_bias, file_to_codon_list, \
    bin_by_p3
from cogent.draw.codon_usage import plot_cai_p3_scatter, \
    plot_p12_p3, plot_p123_gc, plot_fingerprint, plot_pr2_bias, \
    plot_p12_p3_contour, \
    plot_p12_p3_contourlines, aa_labels
from cogent.draw.util import as_species, \
    plot_scatter_with_histograms, plot_histograms, \
    plot_filled_contour, format_contour_array
from pylab import gca, clf
from numpy import transpose
from sys import argv
from os import getcwd
from os.path import sep, join
test_path = getcwd().split(sep)
index = test_path.index('tests')
fields = test_path[:index+1] + ["data"]
test_path = sep + join(*fields)
test_file_name = join(test_path, 'Homo_sapiens_codon_usage.pri')

__author__ = "Stephanie Wilson"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Stephanie Wilson"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

def insert_before_extension(name, item):
    """Inserts item before extension in name."""
    last_dot = name.rfind('.')
    return name[:last_dot+1]+str(item)+'.'+ name[last_dot+1:]
    
#TESTS USING ADAPTORS
def make_generic_adaptor_test(adaptor_f, plot_f, default_outfilename):
    """Makes adaptor test for generic graphs."""
    def adaptor_test(codons, infilename, name, outfilename=default_outfilename):
        print "=> outfile:", outfilename
        print "from file:", infilename
        graph_data = adaptor_f(codons)
        plot_f(graph_data, num_genes=len(codons), graph_name=outfilename,\
            title=name)
        gca().clear()
        clf()
    return adaptor_test

def make_contour_adaptor_test(adaptor_f, plot_f, default_outfilename):
    """Makes adaptor test for contour graphs."""
    def adaptor_test(codons, infilename, name, outfilename=default_outfilename):
        print "=> outfile:", outfilename
        print "from file:", infilename
        xy_data = adaptor_f(codons)
        x, y, data = format_contour_array(xy_data)
        plot_f(x, y, data, xy_data, num_genes=len(codons), \
            graph_name=outfilename, title=name)
        gca().clear()
        clf()
    return adaptor_test

def make_pr2bias_adaptor_test(adaptor_f, plot_f, default_outfilename):
    """Makes adaptor test for pr2bias graphs."""
    def adaptor_test(codons, infilename, name, outfilename=default_outfilename):
        print "=> base outfile:", outfilename
        print "from file:", infilename
        for aa, triplet in aa_labels.items():
            triplet = triplet.replace('T','U')
            graph_data = adaptor_f(codons, block=triplet[:2])
            curr_outfilename = insert_before_extension(outfilename, triplet)
            plot_f(graph_data, num_genes=len(codons), \
                graph_name=curr_outfilename, title=aa)
            gca().clear()
            clf()
    return adaptor_test

def make_gc_gradient_adaptor_test(adaptor_f, plot_f, default_outfilename, \
    one_graph=False, one_series=False):
    """Makes adaptor test for replicated graphs over e.g. a GC gradient"""
    def adaptor_test(codons, infilename, name, outfilename=default_outfilename):
        min_gene_threshold=10   #suppress bins with few genes
        print "=>base outfile:", outfilename
        print "from file:", infilename
        print "one graph:", one_graph
        print "one series:", one_series
        gc_bins = bin_by_p3(codons)
        if one_series:  #assume we want to adapt the list of codon usages
            data = adaptor_f(gc_bins)
            plot_f(data, num_genes=len(codons), graph_name=outfilename,\
                title=name)
        else:
            data = []
            for b in gc_bins:
                try:
                    data.append(adaptor_f(b))
                except:
                    data.append([])
            if one_graph:   #assume downstream f copes with list of data
                total_genes = len(codons)
                alpha = [float(len(b))/total_genes for b in gc_bins]
                plot_f(data, num_genes=total_genes, graph_name=outfilename, \
                    alpha=alpha, title=name, multiple=True)
            else:   #multiple graphs: feed one at a time
                for i, c in enumerate(gc_bins):
                    curr_p3 = i*0.1
                    if len(c) > min_gene_threshold:
                        curr_outfilename = insert_before_extension(\
                            outfilename, curr_p3)
                        graph_data = adaptor_f(c)
                        plot_f(graph_data, num_genes=len(c), \
                            graph_name=curr_outfilename, \
                            title=name+' '+str(curr_p3)+'-'+str(curr_p3+0.1))
                    gca().clear()
                    clf()
        gca().clear()
        clf()
    return adaptor_test
    
mgat = make_generic_adaptor_test    #save typing in what follows
mcat = make_contour_adaptor_test    #ditto
mpat = make_pr2bias_adaptor_test
mggat = make_gc_gradient_adaptor_test

#scatterplot adaptors
test_p12_p3_adaptor = mgat(adapt_p12, plot_p12_p3, 'test_p12_p3_A.png')
test_p123_gc_adaptor = mgat(adapt_p123gc, plot_p123_gc, \
    'test_p123_gc_A.png')

def plot_p12_p3_from_gc(*args, **kwargs):
    return plot_p123_gc(use_p3_as_x=True, graph_shape='sqr',*args, **kwargs)
test_p12_p3gc_adaptor = mgat(adapt_p123gc, plot_p12_p3_from_gc, \
    'test_p12_from_gc_A.png')
test_cai_p3_adaptor = mgat(adapt_cai_p3, plot_cai_p3_scatter, \
    'test_p3_cai_A.png')
def adapt_cai_p3_twoseries(*args, **kwargs):
    return adapt_cai_p3(both_series=True)
def adapt_cai_p3_twoseries(*args, **kwargs): \
    return adapt_cai_p3(both_series=True, *args, **kwargs)
test_cai_p3_twoseries_adaptor = mgat(adapt_cai_p3_twoseries, \
    plot_cai_p3_scatter, 'test_p3_cai_twoseries_A.png')
def scat_hist_cai_p3(data, *args, **kwargs):
    return plot_scatter_with_histograms(data, x_label='$P_3$', y_label='CAI',\
        *args, **kwargs)
test_cai_p3_twoseries_adaptor_hist = mgat(adapt_cai_p3_twoseries, \
    scat_hist_cai_p3, 'test_p3_cai_twoseries_hist_A.png')

#hist adaptors
def cai_histogram(data, *args, **kwargs):
    return plot_histograms(data, x_label='CAI', \
        series_names=['others', 'ribosomal'], show_legend=True, \
        colors=['white','red'], linecolors=['black','red'], alpha=0.7, \
        *args, **kwargs)
test_cai_hist_adaptor = mgat(adapt_cai_histogram, cai_histogram,\
    'test_cai_hist.png')

#fingerprint adaptors
test_fingerprint_adaptor = mgat(adapt_fingerprint, plot_fingerprint, \
    'test_fingerprint_A.png')
test_fingerprint_gradient_adaptor = mggat(adapt_fingerprint, plot_fingerprint,\
    'test_fingerprint_gradient_A.png')
test_fingerprint_gradient_adaptor_one_graph = mggat(adapt_fingerprint, \
    plot_fingerprint, 'test_fingerprint_gradient_onegraph_A.png', one_graph=True)

#pr2 bias adaptors
test_pr2bias_adaptor = mpat(adapt_pr2_bias, plot_pr2_bias, \
    'test_pr2_bias_A.png')

#contour adaptors
test_p12_p3_contour_adaptor = mcat(adapt_p12, plot_p12_p3_contour, \
    'test_p12_p3_contour_A.png')
test_p12_p3_contourlines_adaptor = mcat(adapt_p12, plot_p12_p3_contourlines, \
    'test_p12_p3_contourlines_A.png')

scatter_adaptor = [test_p12_p3_adaptor, test_p123_gc_adaptor, \
    test_p12_p3gc_adaptor, test_cai_p3_adaptor, test_cai_p3_twoseries_adaptor,\
    test_cai_p3_twoseries_adaptor_hist]
hist_adaptor=[test_cai_hist_adaptor]
fingerprint_adaptor = [test_fingerprint_adaptor,
    test_fingerprint_gradient_adaptor, \
    test_fingerprint_gradient_adaptor_one_graph]
pr2bias_adaptor = [test_pr2bias_adaptor]
contour_adaptor = [test_p12_p3_contour_adaptor, \
    test_p12_p3_contourlines_adaptor]

all_adaptor = scatter_adaptor + fingerprint_adaptor + pr2bias_adaptor \
    + hist_adaptor + contour_adaptor

#take in pre-constructed codon usage objects, output requested graphs
def codons_to_graph(codons, as_file, species, which_tests):
    """Function for directly passing in codons instead of 
    reading them in from a file"""
    
    adaptor_tests= all_adaptor
    codon_data_fname=as_file
    print "Running adaptor tests..."
    codon_data = codons
    if which_tests:
        for i in which_tests:
            print "doing test %s" % i
            a = adaptor_tests[i]
            a(codon_data, codon_data_fname, species)
    else:
        for i, a in enumerate(adaptor_tests):
            print "doing test %s" % i
            a(codon_data,codon_data_fname, species)
            
if __name__ == '__main__':
    """Tests if the graphs will all compile
    and outputs the graph from the current
    version of code:
    test_fingerprint.png
    """
    adaptor_tests = all_adaptor
    if len(argv) > 1:
        codon_data_fname = argv[1]
    else:
        codon_data_fname = test_file_name

    if len(argv) > 2:
        which_tests = map(int, argv[2].split(','))
    else:
        which_tests = None
        
    print "Running adaptor tests..."
    if codon_data_fname.endswith('.nuc'):   #assume FASTA from KEGG
        codon_data = kegg_fasta_to_codon_list(open(codon_data_fname))
    else:
        codon_data = file_to_codon_list(codon_data_fname)

    if which_tests:
        for i in which_tests:
            print "doing test %s" % i
            a = adaptor_tests[i]
            a(codon_data, codon_data_fname, as_species(codon_data_fname))
    else:
        for i, a in enumerate(adaptor_tests):
            print "doing test %s" % i
            a(codon_data, codon_data_fname, as_species(codon_data_fname))