1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
#!/usr/bin/env python
"""
Some tests for the likelihood function class.
tests to do:
setting of parameters, by coord, by for-all, checking pars sets
testing the likelihood for specified pars
getting ancestral probs
simulating sequence (not possible to verify values as random)
checking that the object resets on tree change, model change, etc
"""
import warnings
warnings.filterwarnings("ignore", "Motif probs overspecified")
warnings.filterwarnings("ignore", "Model not reversible")
warnings.filterwarnings("ignore", "Ignoring tree edge lengths")
import os
from numpy import ones, dot
from cogent.evolve import substitution_model, predicate
from cogent import DNA, LoadSeqs, LoadTree
from cogent.util.unit_test import TestCase, main
from cogent.maths.matrix_exponentiation import PadeExponentiator as expm
from cogent.maths.stats.information_criteria import aic, bic
from cogent.evolve.models import JTT92
Nucleotide = substitution_model.Nucleotide
MotifChange = predicate.MotifChange
__author__ = "Peter Maxwell and Gavin Huttley"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight",
"Matthew Wakefield", "Brett Easton"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
base_path = os.getcwd()
data_path = os.path.join(base_path, 'data')
ALIGNMENT = LoadSeqs(
moltype=DNA,
filename = os.path.join(data_path,'brca1.fasta'))
OTU_NAMES = ["Human", "Mouse", "HowlerMon"]
########################################################
# some funcs for assembling Q-matrices for 'manual' calc
def isTransition(motif1, motif2):
position = getposition(motif1, motif2)
a, b = motif1[position], motif2[position]
transitions = {('A', 'G') : 1, ('C', 'T'):1}
pair = (min(a, b), max(a, b))
return transitions.has_key(pair)
def numdiffs_position(motif1, motif2):
assert len(motif1) == len(motif2),\
"motif1[%s] & motif2[%s] have inconsistent length" %\
(motif1, motif2)
ndiffs, position = 0, -1
for i in range(len(motif1)):
if motif1[i] != motif2[i]:
position = i
ndiffs += 1
return ndiffs == 1, position
def isinstantaneous(motif1, motif2):
if motif1 != motif2 and (motif1 == '-' * len(motif1) or \
motif2 == '-' * len(motif1)):
return True
ndiffs, position = numdiffs_position(motif1, motif2)
return ndiffs
def getposition(motif1, motif2):
ndiffs, position = numdiffs_position(motif1, motif2)
return position
##############################################################
# funcs for testing the monomer weighted substitution matrices
_root_probs = lambda x: dict([(n1+n2, p1*p2) \
for n1,p1 in x.items() for n2,p2 in x.items()])
def make_p(length, coord, val):
"""returns a probability matrix with value set at coordinate in
instantaneous rate matrix"""
Q = ones((4,4), float)*0.25 # assumes equi-frequent mprobs at root
for i in range(4):
Q[i,i] = 0.0
Q[coord] *= val
row_sum = Q.sum(axis=1)
scale = 1/(.25*row_sum).sum()
for i in range(4):
Q[i,i] -= row_sum[i]
Q *= scale
return expm(Q)(length)
class LikelihoodCalcs(TestCase):
"""tests ability to calculate log-likelihoods for several
substitution models."""
def setUp(self):
self.alignment = ALIGNMENT.takeSeqs(OTU_NAMES)[0: 42]
self.tree = LoadTree(tip_names=OTU_NAMES)
def _makeLikelihoodFunction(self, submod, translate=False, **kw):
alignment = self.alignment
if translate:
alignment = alignment.getTranslation()
calc = submod.makeLikelihoodFunction(self.tree, **kw)
calc.setAlignment(alignment)
calc.setParamRule('length', value=1.0, is_constant=True)
if not translate:
calc.setParamRule('kappa', value=3.0, is_constant=True)
return calc
def test_no_seq_named_root(self):
"""root is a reserved name"""
aln = self.alignment.takeSeqs(self.alignment.Names[:4])
aln = aln.todict()
one = aln.pop(aln.keys()[0])
aln["root"] = one
aln = LoadSeqs(data=aln)
submod = Nucleotide()
tree = LoadTree(treestring="%s" % str(tuple(aln.Names)))
lf = submod.makeLikelihoodFunction(tree)
try:
lf.setAlignment(aln)
except AssertionError:
pass
collection = aln.degap().NamedSeqs
collection.pop("Human")
tree = LoadTree(treestring="%s" % str(tuple(collection.keys())))
lf = submod.makeLikelihoodFunction(tree, aligned=False)
try:
lf.setSequences(collection)
except AssertionError:
pass
def test_binned_gamma(self):
"""just rate is gamma distributed"""
submod = substitution_model.Codon(
predicates={'kappa': 'transition', 'omega': 'replacement'},
ordered_param='rate', distribution='gamma', mprob_model='tuple')
lf = self._makeLikelihoodFunction(submod, bins=3)
try:
values = lf.getParamValueDict(['bin'])['omega_factor'].values()
except KeyError:
# there shouldn't be an omega factor
pass
values = lf.getParamValueDict(['bin'])['rate'].values()
obs = round(sum(values) / len(values), 6)
self.assertEqual(obs, 1.0)
self.assertEqual(len(values), 3)
shape = lf.getParamValue('rate_shape')
def test_binned_gamma_ordered_param(self):
"""rate is gamma distributed omega follows"""
submod = substitution_model.Codon(
predicates={'kappa': 'transition', 'omega': 'replacement'},
ordered_param='rate', partitioned_params='omega',
distribution='gamma', mprob_model='tuple')
lf = self._makeLikelihoodFunction(submod,bins=3)
values = lf.getParamValueDict(['bin'])['omega_factor'].values()
self.assertEqual(round(sum(values) / len(values), 6), 1.0)
self.assertEqual(len(values), 3)
shape = lf.getParamValue('rate_shape')
def test_binned_partition(self):
submod = substitution_model.Codon(
predicates={'kappa': 'transition', 'omega': 'replacement'},
ordered_param='rate', partitioned_params='omega',
distribution='free', mprob_model='tuple')
lf = self._makeLikelihoodFunction(submod, bins=3)
values = lf.getParamValueDict(['bin'])['omega_factor'].values()
self.assertEqual(round(sum(values) / len(values), 6), 1.0)
self.assertEqual(len(values), 3)
def test_complex_binned_partition(self):
submod = substitution_model.Codon(
predicates={'kappa': 'transition', 'omega': 'replacement'},
ordered_param='kappa', partitioned_params=['omega'],
mprob_model='tuple')
lf = self._makeLikelihoodFunction(submod,
bins=['slow', 'fast'])
lf.setParamRule('kappa', value=1.0, is_constant=True)
lf.setParamRule('kappa', edge="Human", init=1.0, is_constant=False)
values = lf.getParamValueDict(['bin'])['kappa_factor'].values()
self.assertEqual(round(sum(values) / len(values), 6), 1.0)
self.assertEqual(len(values), 2)
def test_codon(self):
"""test a three taxa codon model."""
submod = substitution_model.Codon(
equal_motif_probs=True,
do_scaling=False,
motif_probs=None,
predicates={'kappa': 'transition', 'omega': 'replacement'},
mprob_model='tuple')
likelihood_function = self._makeLikelihoodFunction(submod)
likelihood_function.setParamRule('omega', value=0.5, is_constant=True)
evolve_lnL = likelihood_function.getLogLikelihood()
self.assertFloatEqual(evolve_lnL, -80.67069614541883)
def test_nucleotide(self):
"""test a nucleotide model."""
submod = Nucleotide(
equal_motif_probs=True,
do_scaling=False,
motif_probs=None,
predicates={'kappa': 'transition'})
# now do using the evolve
likelihood_function = self._makeLikelihoodFunction(
submod)
self.assertEqual(likelihood_function.getNumFreeParams(), 0)
evolve_lnL = likelihood_function.getLogLikelihood()
self.assertFloatEqual(evolve_lnL, -157.49363874840455)
def test_discrete_nucleotide(self):
"""test that partially discrete nucleotide model can be constructed,
differs from continuous, and has the expected number of free params"""
submod = Nucleotide(
equal_motif_probs=True,
do_scaling=False,
motif_probs=None,
predicates={'kappa': 'transition'})
likelihood_function = self._makeLikelihoodFunction(
submod, discrete_edges=['Human'])
self.assertEqual(likelihood_function.getNumFreeParams(), 12)
evolve_lnL = likelihood_function.getLogLikelihood()
self.assertNotEqual(evolve_lnL, -157.49363874840455)
def test_dinucleotide(self):
"""test a dinucleotide model."""
submod = substitution_model.Dinucleotide(
equal_motif_probs=True,
do_scaling=False,
motif_probs = None,
predicates = {'kappa': 'transition'},
mprob_model='tuple')
likelihood_function = self._makeLikelihoodFunction(submod)
evolve_lnL = likelihood_function.getLogLikelihood()
self.assertFloatEqual(evolve_lnL, -102.48145536663735)
def test_protein(self):
"""test a protein model."""
submod = substitution_model.Protein(
do_scaling=False, equal_motif_probs=True)
likelihood_function = self._makeLikelihoodFunction(submod,
translate=True)
evolve_lnL = likelihood_function.getLogLikelihood()
self.assertFloatEqual(evolve_lnL, -89.830370754876185)
class LikelihoodFunctionTests(TestCase):
"""tests for a tree analysis class. Various tests to create a tree analysis class,
set parameters, and test various functions.
"""
def setUp(self):
self.submodel = Nucleotide(
do_scaling=True, model_gaps=False, equal_motif_probs=True,
predicates = {'beta': 'transition'})
self.data = LoadSeqs(
filename = os.path.join(data_path, 'brca1_5.paml'),
moltype = self.submodel.MolType)
self.tree = LoadTree(
filename = os.path.join(data_path, 'brca1_5.tree'))
def _makeLikelihoodFunction(self, **kw):
lf = self.submodel.makeLikelihoodFunction(self.tree, **kw)
lf.setParamRule('beta', is_independent=True)
lf.setAlignment(self.data)
return lf
def _setLengthsAndBetas(self, likelihood_function):
for (species, length) in [
("DogFaced", 0.1),
("NineBande", 0.2),
("Human", 0.3),
("HowlerMon", 0.4),
("Mouse", 0.5)]:
likelihood_function.setParamRule("length", value=length,
edge=species, is_constant=True)
for (species1, species2, length) in [
("Human", "HowlerMon", 0.7),
("Human", "Mouse", 0.6)]:
LCA = self.tree.getConnectingNode(species1, species2).Name
likelihood_function.setParamRule("length", value=length,
edge=LCA, is_constant=True)
likelihood_function.setParamRule("beta", value=4.0, is_constant=True)
def test_information_criteria(self):
"""test get information criteria from a model."""
lf = self._makeLikelihoodFunction()
nfp = lf.getNumFreeParams()
lnL = lf.getLogLikelihood()
l = len(self.data)
self.assertFloatEqual(lf.getAic(), aic(lnL, nfp))
self.assertFloatEqual(lf.getAic(second_order=True),
aic(lnL, nfp, l))
self.assertFloatEqual(lf.getBic(), bic(lnL, nfp, l))
def test_result_str(self):
# actualy more a test of self._setLengthsAndBetas()
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
self.assertEqual(str(likelihood_function), \
"""Likelihood Function Table\n\
======
beta
------
4.0000
------
=============================
edge parent length
-----------------------------
Human edge.0 0.3000
HowlerMon edge.0 0.4000
edge.0 edge.1 0.7000
Mouse edge.1 0.5000
edge.1 root 0.6000
NineBande root 0.2000
DogFaced root 0.1000
-----------------------------
===============
motif mprobs
---------------
T 0.2500
C 0.2500
A 0.2500
G 0.2500
---------------""")
likelihood_function = self._makeLikelihoodFunction(digits=2,space=2)
self.assertEqual(str(likelihood_function), \
"""Likelihood Function Table\n\
===============================
edge parent length beta
-------------------------------
Human edge.0 1.00 1.00
HowlerMon edge.0 1.00 1.00
edge.0 edge.1 1.00 1.00
Mouse edge.1 1.00 1.00
edge.1 root 1.00 1.00
NineBande root 1.00 1.00
DogFaced root 1.00 1.00
-------------------------------
=============
motif mprobs
-------------
T 0.25
C 0.25
A 0.25
G 0.25
-------------""")
def test_calclikelihood(self):
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
self.assertAlmostEquals(-250.686745262,
likelihood_function.getLogLikelihood(),places=9)
def test_g_statistic(self):
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
self.assertAlmostEquals(230.77670557,
likelihood_function.getGStatistic(),places=6)
def test_ancestralsequences(self):
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
result = likelihood_function.reconstructAncestralSeqs()['edge.0']
a_column_with_mostly_Ts = -1
motif_G = 2
self.assertAlmostEquals(2.28460181711e-05,
result[a_column_with_mostly_Ts][motif_G], places=8)
lf = self.submodel.makeLikelihoodFunction(self.tree, bins=['low', 'high'])
lf.setParamRule('beta', bin='low', value=0.1)
lf.setParamRule('beta', bin='high', value=10.0)
lf.setAlignment(self.data)
result = lf.reconstructAncestralSeqs()
def test_likely_ancestral(self):
"""excercising the most likely ancestral sequences"""
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
result = likelihood_function.likelyAncestralSeqs()
def test_simulateAlignment(self):
"Simulate DNA alignment"
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
simulated_alignment = likelihood_function.simulateAlignment(20, exclude_internal = False)
self.assertEqual(len(simulated_alignment), 20)
self.assertEqual(len(simulated_alignment.getSeqNames()), 8)
def test_simulateHetergeneousAlignment(self):
"Simulate substitution-heterogeneous DNA alignment"
lf = self.submodel.makeLikelihoodFunction(self.tree, bins=['low', 'high'])
lf.setParamRule('beta', bin='low', value=0.1)
lf.setParamRule('beta', bin='high', value=10.0)
simulated_alignment = lf.simulateAlignment(100)
def test_simulatePatchyHetergeneousAlignment(self):
"Simulate patchy substitution-heterogeneous DNA alignment"
lf = self.submodel.makeLikelihoodFunction(self.tree, bins=['low', 'high'], sites_independent=False)
lf.setParamRule('beta', bin='low', value=0.1)
lf.setParamRule('beta', bin='high', value=10.0)
simulated_alignment = lf.simulateAlignment(100)
def test_simulateAlignment2(self):
"Simulate alignment with dinucleotide model"
al = LoadSeqs(data={'a':'ggaatt','c':'cctaat'})
t = LoadTree(treestring="(a,c);")
sm = substitution_model.Dinucleotide(mprob_model='tuple')
lf = sm.makeParamController(t)
lf.setAlignment(al)
simalign = lf.simulateAlignment()
self.assertEqual(len(simalign), 6)
def test_simulateAlignment3(self):
"""Simulated alignment with gap-induced ambiguous positions
preserved"""
t = LoadTree(treestring='(a:0.4,b:0.3,(c:0.15,d:0.2)edge.0:0.1)root;')
al = LoadSeqs(data={
'a':'g--cactat?',
'b':'---c-ctcct',
'c':'-a-c-ctat-',
'd':'-a-c-ctat-'})
sm = Nucleotide(recode_gaps=True)
lf = sm.makeParamController(t)
#pc.setConstantLengths()
lf.setAlignment(al)
#print lf.simulateAlignment(sequence_length=10)
simulated = lf.simulateAlignment()
self.assertEqual(len(simulated.getSeqNames()), 4)
import re
self.assertEqual(
re.sub('[ATCG]', 'x', simulated.todict()['a']),
'x??xxxxxx?')
def test_simulateAlignment_root_sequence(self):
"""provide a root sequence for simulating an alignment"""
def use_root_seq(root_sequence):
al = LoadSeqs(data={'a':'ggaatt','c':'cctaat'})
t = LoadTree(treestring="(a,c);")
sm = substitution_model.Dinucleotide(mprob_model='tuple')
lf = sm.makeParamController(t)
lf.setAlignment(al)
simalign = lf.simulateAlignment(exclude_internal=False,
root_sequence=root_sequence)
root = simalign.NamedSeqs['root']
self.assertEqual(str(root), str(root_sequence))
root_sequence = DNA.makeSequence('GTAATT')
use_root_seq(root_sequence) # as a sequence instance
use_root_seq('GTAATC') # as a string
def test_pc_initial_parameters(self):
"""Default parameter values from original annotated tree"""
likelihood_function = self._makeLikelihoodFunction()
self._setLengthsAndBetas(likelihood_function)
tree = likelihood_function.getAnnotatedTree()
lf = self.submodel.makeParamController(tree)
lf.setAlignment(self.data)
self.assertEqual(lf.getParamValue("length", "Human"), 0.3)
self.assertEqual(lf.getParamValue("beta", "Human"), 4.0)
def test_set_par_all(self):
likelihood_function = self._makeLikelihoodFunction()
likelihood_function.setParamRule("length", value=4.0, is_constant=True)
likelihood_function.setParamRule("beta", value=6.0, is_constant=True)
self.assertEqual(str(likelihood_function), \
"""Likelihood Function Table
======
beta
------
6.0000
------
=============================
edge parent length
-----------------------------
Human edge.0 4.0000
HowlerMon edge.0 4.0000
edge.0 edge.1 4.0000
Mouse edge.1 4.0000
edge.1 root 4.0000
NineBande root 4.0000
DogFaced root 4.0000
-----------------------------
===============
motif mprobs
---------------
T 0.2500
C 0.2500
A 0.2500
G 0.2500
---------------""")
#self.submodel.setScaleRule("ts",['beta'])
#self.submodel.setScaleRule("tv",['beta'], exclude_pars = True)
self.assertEqual(str(likelihood_function),\
"""Likelihood Function Table
======
beta
------
6.0000
------
=============================
edge parent length
-----------------------------
Human edge.0 4.0000
HowlerMon edge.0 4.0000
edge.0 edge.1 4.0000
Mouse edge.1 4.0000
edge.1 root 4.0000
NineBande root 4.0000
DogFaced root 4.0000
-----------------------------
===============
motif mprobs
---------------
T 0.2500
C 0.2500
A 0.2500
G 0.2500
---------------""")
def test_getMotifProbs(self):
likelihood_function = self._makeLikelihoodFunction()
mprobs = likelihood_function.getMotifProbs()
assert hasattr(mprobs, 'keys'), mprobs
keys = mprobs.keys()
keys.sort()
obs = self.submodel.getMotifs()
obs.sort()
self.assertEqual(obs, keys)
def test_getAnnotatedTree(self):
likelihood_function = self._makeLikelihoodFunction()
likelihood_function.setParamRule("length", value=4.0, edge="Human", is_constant=True)
result = likelihood_function.getAnnotatedTree()
self.assertEqual(result.getNodeMatchingName('Human').params['length'], 4.0)
self.assertEqual(result.getNodeMatchingName('Human').Length, 4.0)
def test_getparamsasdict(self):
likelihood_function = self._makeLikelihoodFunction()
likelihood_function.setName("TEST")
self.assertEqual(str(likelihood_function),\
"""TEST
=======================================
edge parent length beta
---------------------------------------
Human edge.0 1.0000 1.0000
HowlerMon edge.0 1.0000 1.0000
edge.0 edge.1 1.0000 1.0000
Mouse edge.1 1.0000 1.0000
edge.1 root 1.0000 1.0000
NineBande root 1.0000 1.0000
DogFaced root 1.0000 1.0000
---------------------------------------
===============
motif mprobs
---------------
T 0.2500
C 0.2500
A 0.2500
G 0.2500
---------------""")
self.assertEqual(likelihood_function.getParamValueDict(['edge']), {
'beta': {'NineBande': 1.0, 'edge.1': 1.0,'DogFaced': 1.0, 'Human': 1.0,
'edge.0': 1.0, 'Mouse': 1.0, 'HowlerMon': 1.0},
'length': {'NineBande': 1.0,'edge.1': 1.0, 'DogFaced': 1.0, 'Human': 1.0,
'edge.0': 1.0, 'Mouse': 1.0,'HowlerMon': 1.0}})
def test_get_statistics_from_empirical_model(self):
"""should return valid dict from an empirical substitution model"""
submod = JTT92()
aln = self.data.getTranslation()
lf = submod.makeLikelihoodFunction(self.tree)
lf.setAlignment(aln)
stats = lf.getParamValueDict(['edge'], params=['length'])
def test_constant_to_free(self):
"""excercise setting a constant param rule, then freeing it"""
# checks by just trying to make the calculator
lf = self.submodel.makeLikelihoodFunction(self.tree)
lf.setAlignment(self.data)
lf.setParamRule('beta', is_constant=True, value=2.0,
edges=['NineBande', 'DogFaced'], is_clade=True)
lf.setParamRule('beta', init=2.0, is_constant=False,
edges=['NineBande', 'DogFaced'], is_clade=True)
def test_get_psub_rate_matrix(self):
"""lf should return consistent rate matrix and psub"""
lf = self.submodel.makeLikelihoodFunction(self.tree)
lf.setAlignment(self.data)
Q = lf.getRateMatrixForEdge('NineBande')
P = lf.getPsubForEdge('NineBande')
self.assertFloatEqual(expm(Q.array)(1.0), P.array)
# should fail for a discrete Markov model
dm = substitution_model.DiscreteSubstitutionModel(DNA.Alphabet)
lf = dm.makeLikelihoodFunction(self.tree)
lf.setAlignment(self.data)
self.assertRaises(Exception, lf.getRateMatrixForEdge, 'NineBande')
def test_make_discrete_markov(self):
"""lf ignores tree lengths if a discrete Markov model"""
t = LoadTree(treestring='(a:0.4,b:0.3,(c:0.15,d:0.2)edge.0:0.1)root;')
dm = substitution_model.DiscreteSubstitutionModel(DNA.Alphabet)
lf = dm.makeLikelihoodFunction(t)
if __name__ == '__main__':
main()
|