File: test_pairwise_distance.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (254 lines) | stat: -rw-r--r-- 11,542 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
import warnings
warnings.filterwarnings('ignore', 'Not using MPI as mpi4py not found')

import numpy
# hides the warning from taking log of -ve determinant
numpy.seterr(invalid='ignore')

from cogent.util.unit_test import TestCase, main
from cogent import LoadSeqs, DNA, RNA, PROTEIN
from cogent.evolve.pairwise_distance import get_moltype_index_array, \
    seq_to_indices, _fill_diversity_matrix, \
    _jc69_from_matrix, JC69Pair, _tn93_from_matrix, TN93Pair, LogDetPair
from cogent.evolve._pairwise_distance import \
    _fill_diversity_matrix as pyx_fill_diversity_matrix
import math

__author__ = "Gavin Huttley and Yicheng Zhu"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Gavin Huttley", "Yicheng Zhu"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "Gavin.Huttley@anu.edu.au"
__status__ = "Production"


class TestPair(TestCase):
    dna_char_indices = get_moltype_index_array(DNA)
    rna_char_indices = get_moltype_index_array(RNA)
    alignment = LoadSeqs(data=[('s1', 'ACGTACGTAC'),
                             ('s2', 'GTGTACGTAC')], moltype=DNA)
    
    ambig_alignment = LoadSeqs(data=[('s1', 'RACGTACGTACN'),
                             ('s2', 'AGTGTACGTACA')], moltype=DNA)
    
    diff_alignment = LoadSeqs(data=[('s1', 'ACGTACGTTT'),
                             ('s2', 'GTGTACGTAC')], moltype=DNA)
    
    def est_char_to_index(self):
        """should correctly recode a DNA & RNA seqs into indices"""
        seq = 'TCAGRNY?-'
        expected = [0, 1, 2, 3, -9, -9, -9, -9, -9]
        indices = seq_to_indices(seq, self.dna_char_indices)
        self.assertEquals(indices, expected)
        seq = 'UCAGRNY?-'
        indices = seq_to_indices(seq, self.rna_char_indices)
        self.assertEquals(indices, expected)
    
    def est_fill_diversity_matrix_all(self):
        """make correct diversity matrix when all chars valid"""
        s1 = seq_to_indices('ACGTACGTAC', self.dna_char_indices)
        s2 = seq_to_indices('GTGTACGTAC', self.dna_char_indices)
        matrix = numpy.zeros((4,4), float)
        # self-self should just be an identity matrix
        _fill_diversity_matrix(matrix, s1, s1)
        self.assertEquals(matrix.sum(), len(s1))
        self.assertEquals(matrix,
            numpy.array([[2,0,0,0],
                         [0,3,0,0],
                         [0,0,3,0],
                         [0,0,0,2]], float))
        
        # small diffs
        matrix.fill(0)
        _fill_diversity_matrix(matrix, s1, s2)
        self.assertEquals(matrix,
            numpy.array([[2,0,0,0],
                         [1,2,0,0],
                         [0,0,2,1],
                         [0,0,0,2]], float))
    
    def est_fill_diversity_matrix_some(self):
        """make correct diversity matrix when not all chars valid"""
        s1 = seq_to_indices('RACGTACGTACN', self.dna_char_indices)
        s2 = seq_to_indices('AGTGTACGTACA', self.dna_char_indices)
        matrix = numpy.zeros((4,4), float)
        # small diffs
        matrix.fill(0)
        _fill_diversity_matrix(matrix, s1, s2)
        self.assertEquals(matrix,
            numpy.array([[2,0,0,0],
                         [1,2,0,0],
                         [0,0,2,1],
                         [0,0,0,2]], float))
    
    def est_python_vs_cython_fill_matrix(self):
        """python & cython fill_diversity_matrix give same answer"""
        s1 = seq_to_indices('RACGTACGTACN', self.dna_char_indices)
        s2 = seq_to_indices('AGTGTACGTACA', self.dna_char_indices)
        matrix1 = numpy.zeros((4,4), float)
        _fill_diversity_matrix(matrix1, s1, s2)
        matrix2 = numpy.zeros((4,4), float)
        pyx_fill_diversity_matrix(matrix2, s1, s2)
        self.assertFloatEqual(matrix1, matrix2)
    
    def est_jc69_from_matrix(self):
        """compute JC69 from diversity matrix"""
        s1 = seq_to_indices('ACGTACGTAC', self.dna_char_indices)
        s2 = seq_to_indices('GTGTACGTAC', self.dna_char_indices)
        matrix = numpy.zeros((4,4), float)
        _fill_diversity_matrix(matrix, s1, s2)
        total, p, dist, var = _jc69_from_matrix(matrix)
        self.assertEquals(total, 10.0)
        self.assertEquals(p, 0.2)
    
    def est_jc69_from_alignment(self):
        """compute JC69 dists from an alignment"""
        calc = JC69Pair(DNA, alignment=self.alignment)
        calc.run()
        self.assertEquals(calc.Lengths['s1', 's2'], 10)
        self.assertEquals(calc.Proportions['s1', 's2'], 0.2)
        # value from OSX MEGA 5
        self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2326161962)
        # value**2 from OSX MEGA 5
        self.assertFloatEqual(calc.Variances['s1', 's2'],
                                0.029752066125078681)
        # value from OSX MEGA 5
        self.assertFloatEqual(calc.StdErr['s1', 's2'], 0.1724878724)
        
        # same answer when using ambiguous alignment
        calc.run(self.ambig_alignment)
        self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2326161962)
        
        # but different answer if subsequent alignment is different
        calc.run(self.diff_alignment)
        self.assertTrue(calc.Dists['s1', 's2'] != 0.2326161962)
    
    def est_tn93_from_matrix(self):
        """compute TN93 distances"""
        calc = TN93Pair(DNA, alignment=self.alignment)
        calc.run()
        self.assertEquals(calc.Lengths['s1', 's2'], 10)
        self.assertEquals(calc.Proportions['s1', 's2'], 0.2)
        # value from OSX MEGA 5
        self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2554128119)
        # value**2 from OSX MEGA 5
        self.assertFloatEqual(calc.Variances['s1', 's2'], 0.04444444445376601)
        # value from OSX MEGA 5
        self.assertFloatEqual(calc.StdErr['s1', 's2'], 0.2108185107)
        
        # same answer when using ambiguous alignment
        calc.run(self.ambig_alignment)
        self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2554128119)
        
        # but different answer if subsequent alignment is different
        calc.run(self.diff_alignment)
        self.assertTrue(calc.Dists['s1', 's2'] != 0.2554128119)
    
    def est_distance_pair(self):
        """get distances dict"""
        calc = TN93Pair(DNA, alignment=self.alignment)
        calc.run()
        dists = calc.getPairwiseDistances()
        dist = 0.2554128119
        expect = {('s1', 's2'): dist, ('s2', 's1'): dist}
        self.assertEquals(dists.keys(), expect.keys())
        self.assertFloatEqual(dists.values(), expect.values())
    
    def est_logdet_pair_dna(self):
        """logdet should produce distances that match MEGA"""
        aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
        logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
        logdet_calc.run(use_tk_adjustment=True)
        dists = logdet_calc.getPairwiseDistances()
        all_expected = {('Human', 'NineBande'): 0.075336929999999996,
                    ('NineBande', 'DogFaced'): 0.0898575452,
                    ('DogFaced', 'Human'): 0.1061747919,
                    ('HowlerMon', 'DogFaced'): 0.0934480008,
                    ('Mouse', 'HowlerMon'): 0.26422862920000001,
                    ('NineBande', 'Human'): 0.075336929999999996,
                    ('HowlerMon', 'NineBande'): 0.062202897899999998,
                    ('DogFaced', 'NineBande'): 0.0898575452,
                    ('DogFaced', 'HowlerMon'): 0.0934480008,
                    ('Human', 'DogFaced'): 0.1061747919,
                    ('Mouse', 'Human'): 0.26539976700000001,
                    ('NineBande', 'HowlerMon'): 0.062202897899999998,
                    ('HowlerMon', 'Human'): 0.036571181899999999,
                    ('DogFaced', 'Mouse'): 0.2652555144,
                    ('HowlerMon', 'Mouse'): 0.26422862920000001,
                    ('Mouse', 'DogFaced'): 0.2652555144,
                    ('NineBande', 'Mouse'): 0.22754789210000001,
                    ('Mouse', 'NineBande'): 0.22754789210000001,
                    ('Human', 'Mouse'): 0.26539976700000001,
                    ('Human', 'HowlerMon'): 0.036571181899999999}
        for pair in dists:
            got = dists[pair]
            expected = all_expected[pair]
            self.assertFloatEqual(got, expected)
    
    def est_logdet_tk_adjustment(self):
        """logdet using tamura kumar differs from classic"""
        aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
        logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
        logdet_calc.run(use_tk_adjustment=True, show_progress=False)
        tk = logdet_calc.getPairwiseDistances()
        logdet_calc.run(use_tk_adjustment=False, show_progress=False)
        not_tk = logdet_calc.getPairwiseDistances()
        self.assertNotEqual(tk, not_tk)
        
    
    def est_logdet_pair_aa(self):
        """logdet shouldn't fail to produce distances for aa seqs"""
        aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
        aln = aln.getTranslation()
        logdet_calc = LogDetPair(moltype=PROTEIN, alignment=aln)
        logdet_calc.run(use_tk_adjustment=True, show_progress=False)
        dists = logdet_calc.getPairwiseDistances()
    
    def test_logdet_missing_states(self):
        """should calculate logdet measurement with missing states"""
        data = [('seq1', "GGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT"),
                ('seq2', "TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")]
        aln = LoadSeqs(data=data, moltype=DNA)
        logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
        logdet_calc.run(use_tk_adjustment=True, show_progress=False)
        
        dists = logdet_calc.getPairwiseDistances()
        self.assertTrue(dists.values()[0] is not None)
        
        logdet_calc.run(use_tk_adjustment=False, show_progress=False)
        dists = logdet_calc.getPairwiseDistances()
        self.assertTrue(dists.values()[0] is not None)
    
    def test_logdet_variance(self):
        """calculate logdet variance consistent with hand calculation"""
        data = [('seq1', "GGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT"),
                ('seq2', "TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")]
        aln = LoadSeqs(data=data, moltype=DNA)
        logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
        logdet_calc.run(use_tk_adjustment=True, show_progress=False)
        self.assertFloatEqual(logdet_calc.Variances[1,1], 0.5267, eps=1e-3)
        
        logdet_calc.run(use_tk_adjustment=False, show_progress=False)
        dists = logdet_calc.getPairwiseDistances()
        self.assertFloatEqual(logdet_calc.Variances[1,1], 0.4797, eps=1e-3)
    
    def est_logdet_for_determinant_lte_zero(self):
        """returns distance of None if the determinant is <= 0"""
        data = dict(seq1="AGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT",
                    seq2="TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")
        aln = LoadSeqs(data=data, moltype=DNA)
        
        logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
        logdet_calc.run(use_tk_adjustment=True, show_progress=False)
        dists = logdet_calc.getPairwiseDistances()
        self.assertTrue(dists.values()[0] is None)
        logdet_calc.run(use_tk_adjustment=False, show_progress=False)
        dists = logdet_calc.getPairwiseDistances()
        self.assertTrue(dists.values()[0] is None)
    

if __name__ == '__main__':
    main()