1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#! /usr/bin/env python
# Matthew Wakefield Feb 2004
from __future__ import with_statement
import unittest
import os
import warnings
from cogent import LoadSeqs, LoadTree
import cogent.evolve.parameter_controller, cogent.evolve.substitution_model
from cogent.maths import optimisers
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Matthew Wakefield"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
base_path = os.getcwd()
data_path = os.path.join(base_path, 'data')
good_rule_sets = [
[
{'par_name' : 'length','is_independent':True},
],
[
{'par_name' : 'length','is_independent':True},
],
[
{'par_name' : 'length','is_clade' :True, 'is_independent':True, 'edges' : ['a','b']},
],
[
{'par_name' : 'length','is_independent':True, 'edges' : ['a','c','e']},
],
[
{'par_name' : 'length','is_independent':True, 'edge' : 'a'},
],
]
bad_rule_sets = [
[
{'par_name' : 'length','is_clade' :True, 'edges' : ['b','f'],},
],
]
class test_parameter_controller(unittest.TestCase):
"""Tesing Parameter Controller"""
def setUp(self):
#length all edges 1 except c=2. b&d transitions all other transverions
self.al = LoadSeqs(
data={'a':'tata', 'b':'tgtc', 'c':'gcga', 'd':'gaac', 'e':'gagc',})
self.tree = LoadTree(treestring='((a,b),(c,d),e);')
self.model = cogent.evolve.substitution_model.Nucleotide(
do_scaling=True, equal_motif_probs=True, model_gaps=True)
def test_scoped_local(self):
model = cogent.evolve.substitution_model.Nucleotide(
do_scaling=True, equal_motif_probs=True, model_gaps=True,
predicates = {'kappa':'transition'})
lf = model.makeLikelihoodFunction(self.tree)
lf.setConstantLengths()
lf.setAlignment(self.al)
null = lf.getNumFreeParams()
lf.setParamRule(par_name='kappa',
is_independent=True,
edges=['b','d'])
self.assertEqual(null+2, lf.getNumFreeParams())
def test_setMotifProbs(self):
"""Mprobs supplied to the parameter controller"""
model = cogent.evolve.substitution_model.Nucleotide(
model_gaps=True, motif_probs=None)
lf = model.makeLikelihoodFunction(self.tree,
motif_probs_from_align=False)
mprobs = {'A':0.1,'C':0.2,'G':0.2,'T':0.5,'-':0.0}
lf.setMotifProbs(mprobs)
self.assertEqual(lf.getMotifProbs(), mprobs)
lf.setMotifProbsFromData(self.al[:1], is_constant=True)
self.assertEqual(lf.getMotifProbs()['G'], 0.6)
lf.setMotifProbsFromData(self.al[:1], pseudocount=1)
self.assertNotEqual(lf.getMotifProbs()['G'], 0.6)
# test with consideration of ambiguous states
al = LoadSeqs(data = {'seq1': 'ACGTAAGNA', 'seq2': 'ACGTANGTC',
'seq3': 'ACGTACGTG'})
lf.setMotifProbsFromData(al, include_ambiguity=True, is_constant=True)
motif_probs = dict(lf.getMotifProbs())
correct_probs = {'A': 8.5/27, 'C': 5.5/27, '-': 0.0, 'T': 5.5/27,
'G': 7.5/27}
self.assertEqual(motif_probs, correct_probs)
self.assertEqual(sum(motif_probs.values()), 1.0)
def test_setMultiLocus(self):
"""2 loci each with own mprobs"""
model = cogent.evolve.substitution_model.Nucleotide(motif_probs=None)
lf = model.makeLikelihoodFunction(self.tree,
motif_probs_from_align=False, loci=["a", "b"])
mprobs_a = dict(A=.2, T=.2, C=.3, G=.3)
mprobs_b = dict(A=.1, T=.2, C=.3, G=.4)
for is_constant in [False, True]:
lf.setMotifProbs(mprobs_a, is_constant=is_constant)
s = str(lf)
lf.setMotifProbs(mprobs_b, locus="b")
self.assertEqual(lf.getMotifProbs(locus="a"), mprobs_a)
self.assertEqual(lf.getMotifProbs(locus="b"), mprobs_b)
s = str(lf)
#lf.setParamRule('mprobs', is_independent=False)
def test_setParamRules(self):
lf = self.model.makeLikelihoodFunction(self.tree)
def do_rules(rule_set):
for rule in rule_set:
lf.setParamRule(**rule)
for rule_set in good_rule_sets:
lf.setDefaultParamRules()
do_rules(rule_set)
for rule_set in bad_rule_sets:
lf.setDefaultParamRules()
self.assertRaises((KeyError, TypeError,
AssertionError, ValueError), do_rules, rule_set)
def test_setLocalClock(self):
pass
def test_setConstantLengths(self):
t = LoadTree(treestring='((a:1,b:2):3,(c:4,d:5):6,e:7);')
lf = self.model.makeLikelihoodFunction(t)#self.tree)
lf.setParamRule('length', is_constant=True)
# lf.setConstantLengths(t)
lf.setAlignment(self.al)
self.assertEqual(lf.getParamValue('length', 'b'), 2)
self.assertEqual(lf.getParamValue('length', 'd'), 5)
def test_pairwise_clock(self):
al = LoadSeqs(data={'a':'agct','b':'ggct'})
tree = LoadTree(treestring='(a,b);')
model = cogent.evolve.substitution_model.Dinucleotide(
do_scaling=True, equal_motif_probs=True, model_gaps=True,
mprob_model='tuple')
lf = model.makeLikelihoodFunction(tree)
lf.setLocalClock('a','b')
lf.setAlignment(al)
lf.optimise(local=True)
rd = lf.getParamValueDict(['edge'], params=['length'])
self.assertAlmostEquals(lf.getLogLikelihood(),-10.1774488956)
self.assertEqual(rd['length']['a'],rd['length']['b'])
def test_local_clock(self):
lf = self.model.makeLikelihoodFunction(self.tree)
lf.setLocalClock('c','d')
lf.setAlignment(self.al)
lf.optimise(local=True,
tolerance=1e-8, max_restarts=2)
rd = lf.getParamValueDict(['edge'], params=['length'])
self.assertAlmostEquals(lf.getLogLikelihood(),-27.84254174)
self.assertEqual(rd['length']['c'],rd['length']['d'])
self.assertNotEqual(rd['length']['a'],rd['length']['e'])
def test_complex_parameter_rules(self):
# This test has many local minima and so does not cope
# with changes to optimiser details.
model = cogent.evolve.substitution_model.Nucleotide(
do_scaling=True, equal_motif_probs=True, model_gaps=True,
predicates = {'kappa':'transition'})
lf = model.makeLikelihoodFunction(self.tree)
lf.setParamRule(par_name='kappa',
is_independent=True)
lf.setParamRule(par_name='kappa',
is_independent=False,
edges=['b','d'])
lf.setConstantLengths(LoadTree(
treestring='((a:1,b:1):1,(c:2,d:1):1,e:1);'))
#print self.pc
lf.setAlignment(self.al)
lf.optimise(local=True)
rd = lf.getParamValueDict(['edge'], params=['kappa'])
self.assertAlmostEquals(lf.getLogLikelihood(),-27.3252, 3)
self.assertEqual(rd['kappa']['b'],rd['kappa']['d'])
self.assertNotEqual(rd['kappa']['a'],rd['kappa']['b'])
def test_bounds(self):
"""Test setting upper and lower bounds for parameters"""
lf = self.model.makeLikelihoodFunction(self.tree)
lf.setParamRule('length', value=3, lower=0, upper=5)
# Out of bounds value should warn and keep bounded
with warnings.catch_warnings(record=True) as w:
lf.setParamRule('length', lower=0, upper=2)
self.assertTrue(len(w), 'No warning issued')
self.assertEqual(lf.getParamValue('length', edge='a'), 2)
# upper < lower bounds should fail
self.assertRaises(ValueError, lf.setParamRule,
'length', lower=2, upper=0)
if __name__ == '__main__':
unittest.main()
|