1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#!/usr/bin/env python
import unittest
from cogent import LoadTree
from cogent.evolve import substitution_model
def a_c(x, y):
return (x == 'A' and y == 'C') or (x == 'C' and y == 'A')
from cogent.evolve.predicate import MotifChange, replacement
__author__ = "Peter Maxwell and Gavin Huttley"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
a_c = MotifChange('A', 'C')
trans = MotifChange('A', 'G') | MotifChange('T', 'C')
TREE = LoadTree(tip_names='ab')
class ScaleRuleTests(unittest.TestCase):
def _makeModel(self, do_scaling, predicates, scale_rules=[]):
return substitution_model.Nucleotide(
do_scaling=do_scaling, equal_motif_probs=True,
model_gaps=False, predicates=predicates, scales=scale_rules)
def _getScaledLengths(self, model, params):
LF = model.makeLikelihoodFunction(TREE)
for param in params:
LF.setParamRule(param, value=params[param], is_constant=True)
result = {}
for predicate in model.scale_masks:
result[predicate] = LF.getScaledLengths(predicate)['a']
return result
def test_scaled(self):
"""Scale rule requiring matrix entries to have all pars specified"""
model = self._makeModel(True, {'k':trans}, {
'ts':trans, 'tv': ~trans})
self.assertEqual(
self._getScaledLengths(model, {'k':6.0, 'length':4.0}),
{'ts': 3.0, 'tv':1.0})
def test_binned(self):
model = self._makeModel(True, {'k':trans}, {
'ts':trans, 'tv': ~trans})
LF = model.makeLikelihoodFunction(TREE, bins=2)
LF.setParamRule('length', value=4.0, is_constant=True)
LF.setParamRule('k', value=6.0, bin='bin0', is_constant=True)
LF.setParamRule('k', value=1.0, bin='bin1', is_constant=True)
for (bin, expected) in [('bin0', 3.0), ('bin1', 4.0/3), (None, 13.0/6)]:
self.assertEqual(LF.getScaledLengths('ts', bin=bin)['a'], expected)
def test_unscaled(self):
"""Scale rule on a model which has scaling performed after calculation
rather than during it"""
model = self._makeModel(False, {'k':trans}, {
'ts':trans, 'tv': ~trans})
self.assertEqual(
self._getScaledLengths(model, {'k':6.0, 'length':2.0}),
{'ts': 3.0, 'tv':1.0})
def test_scaled_or(self):
"""Scale rule where matrix entries can have any of the pars specified"""
model = self._makeModel(True, {'k':trans, 'ac':a_c}, {
'or': (trans | a_c), 'not': ~(trans | a_c)})
self.assertEqual(
self._getScaledLengths(model, {'k':6.0,'length':6.0, 'ac': 3.0}),
{'or': 5.0, 'not': 1.0})
def test_scaling(self):
"""Testing scaling calculations using Dn and Ds as an example."""
model = substitution_model.Codon(
do_scaling=True, model_gaps=False, recode_gaps=True,
predicates = {
'k': trans,
'r': replacement},
motif_probs={
'TAT': 0.0088813702685557206, 'TGT': 0.020511736096426307,
'TCT': 0.024529498836963416, 'TTT': 0.019454430112074435,
'TGC': 0.0010573059843518714, 'TGG': 0.0042292239374074857,
'TAC': 0.002326073165574117, 'TTC': 0.0086699090716853451,
'TCG': 0.0010573059843518714, 'TTA': 0.020723197293296681,
'TTG': 0.01036159864664834, 'TCC': 0.0082469866779445976,
'TCA': 0.022414886868259674, 'GCA': 0.015648128568407697,
'GTA': 0.014590822584055826, 'GCC': 0.0095157538591668436,
'GTC': 0.0063438359061112285, 'GCG': 0.0016916895749629942,
'GTG': 0.0067667582998519769, 'CAA': 0.018185662930852189,
'GTT': 0.021569042080778176, 'GCT': 0.014167900190315077,
'ACC': 0.0042292239374074857, 'GGT': 0.014167900190315077,
'CGA': 0.0012687671812222456, 'CGC': 0.0010573059843518714,
'GAT': 0.030238951152463524, 'AAG': 0.034891097483611758,
'CGG': 0.002326073165574117, 'ACT': 0.028758722774370905,
'GGG': 0.0071896806935927262, 'GGA': 0.016282512159018821,
'GGC': 0.0090928314654260944, 'GAG': 0.031296257136815393,
'AAA': 0.05476844998942694, 'GAC': 0.011207443434129837,
'CGT': 0.0033833791499259885, 'GAA': 0.076337492070205112,
'CTT': 0.010573059843518714, 'ATG': 0.012687671812222457,
'ACA': 0.021991964474518927, 'ACG': 0.00084584478748149711,
'ATC': 0.0076126030873334746, 'AAC': 0.022837809262000422,
'ATA': 0.017762740537111441, 'AGG': 0.013533516599703954,
'CCT': 0.025586804821315288, 'AGC': 0.029393106364982026,
'AGA': 0.021991964474518927, 'CAT': 0.021357580883907802,
'AAT': 0.05772890674561218, 'ATT': 0.019031507718333687,
'CTG': 0.012899133009092831, 'CTA': 0.013744977796574329,
'CTC': 0.0078240642842038483, 'CAC': 0.0050750687248889825,
'CCG': 0.00021146119687037428, 'AGT': 0.03742863184605625,
'CAG': 0.024106576443222668, 'CCA': 0.021357580883907802,
'CCC': 0.0069782194967223515},
scales = {'dN': replacement, 'dS': ~replacement},
mprob_model = 'tuple',
)
length = 0.1115
a = self._getScaledLengths(model,
{'k': 3.6491, 'r': 0.6317, 'length': length})
b = self._getScaledLengths(model,
{'k': 3.6491, 'r': 1.0, 'length': length})
dN = length * a['dN'] / (3.0 * b['dN'])
dS = length * a['dS'] / (3.0 * b['dS'])
# following are results from PAML
self.assertEqual('%.4f' % dN, '0.0325')
self.assertEqual('%.4f' % dS ,'0.0514')
if __name__ == '__main__':
unittest.main()
|