1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
#!/usr/bin/env python
"""Unit tests for distance matrices.
"""
from cogent.util.unit_test import TestCase, main
from cogent.maths.matrix.distance import DistanceMatrix
from cogent.util.dict2d import largest, Dict2DError, Dict2DSparseError
from cogent.parse.aaindex import AAIndex1Record
from cogent.maths.stats.util import Freqs
from copy import deepcopy
__author__ = "Greg Caporaso"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Greg Caporaso", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Greg Caporaso"
__email__ = "caporaso@colorado.edu"
__status__ = "Production"
class DistanceMatrixTests(TestCase):
def setUp(self):
# v : vector
# m : matrix
self.default_keys = list('ACDEFGHIKLMNPQRSTVWY')
# Set up some matrices
v1 = {'A':1, 'B':2, 'C':3}
v2 = {'A':4, 'B':5, 'C':6}
v3 = {'A':7, 'B':8, 'C':9}
self.m1 = {'A':dict(v1),\
'B':dict(v2),\
'C':dict(v3)}
v4 = {'A':0, 'B':1, 'C':5}
v5 = {'A':5, 'B':0, 'C':4, 'X':99}
v6 = {'A':5, 'B':8, 'C':0}
self.m2 = {'A':dict(v4),\
'B':dict(v5),\
'C':dict(v6)}
self.matrices = [self.m1,self.m2]
aar_data = dict(zip(self.default_keys, [i*.15 for i in range(20)]))
# Setup a AAIndex1Record for testing purposes
self.aar = AAIndex1Record("5", "Some Info",\
"25", "Greg", "A test",\
"something", "This is a test, this is only a test",\
[0.987, 0.783, 1., 0], aar_data)
# From test_Dict2D, used in tests at end of this file for
# inheritance testing
self.empty = {}
self.single_same = {'a':{'a':2}}
self.single_diff = {'a':{'b':3}}
self.square = {
'a':{'a':1,'b':2,'c':3},
'b':{'a':2,'b':4,'c':6},
'c':{'a':3,'b':6,'c':9},
}
self.top_triangle = {
'a':{'a':1, 'b':2, 'c':3},
'b':{'b':4, 'c':6},
'c':{'c':9}
}
self.bottom_triangle = {
'b':{'a':2},
'c':{'a':3, 'b':6}
}
self.sparse = {
'a':{'a':1, 'c':3},
'd':{'b':2},
}
self.dense = {
'a':{'a':1,'b':2,'c':3},
'b':{'a':2,'b':4,'c':6},
}
def test_all_init_parameters(self):
""" All parameters to init are handled correctly """
# will fail if any paramters are not recognized
d = DistanceMatrix()
d = DistanceMatrix(data={})
d = DistanceMatrix(RowOrder=[])
d = DistanceMatrix(ColOrder=[])
d = DistanceMatrix(Pad=True)
d = DistanceMatrix(Default=42)
d = DistanceMatrix(data={},RowOrder=[],ColOrder=[],Pad=True,Default=42)
def test_attribute_init(self):
""" Proper initialization of all attributes """
# proper setting to defaults
d = DistanceMatrix(data={'a':{'a':1}})
self.assertEqual(d.RowOrder, self.default_keys)
self.assertEqual(d.ColOrder, self.default_keys)
self.assertEqual(d.Pad, True)
self.assertEqual(d.Default, None)
self.assertEqual(d.RowConstructor, dict)
# differ from defaults
d = DistanceMatrix(data={'a':{'b':1}},RowOrder=['a'],\
ColOrder=['b'],Pad=False,Default=42,RowConstructor=Freqs)
self.assertEqual(d.RowOrder, ['a'])
self.assertEqual(d.ColOrder, ['b'])
self.assertEqual(d.Pad, False)
self.assertEqual(d.Default, 42)
self.assertEqual(d.RowConstructor, Freqs)
# differ from defaults and no data
d = DistanceMatrix(RowOrder=['a'],\
ColOrder=['b'],Pad=False,Default=42,RowConstructor=Freqs)
self.assertEqual(d.RowOrder, ['a'])
self.assertEqual(d.ColOrder, ['b'])
self.assertEqual(d.Pad, False)
self.assertEqual(d.Default, 42)
self.assertEqual(d.RowConstructor, Freqs)
def test_Order_defaults(self):
""" RowOrder and ColOrder are set to default as expected """
for m in self.matrices:
dm = DistanceMatrix(data=m)
self.assertEqual(dm.RowOrder, self.default_keys)
self.assertEqual(dm.ColOrder, self.default_keys)
def test_Order_parameters(self):
""" RowOrder and ColOrder are set to paramters as expected """
row_order = ['a']
col_order = ['b']
for m in self.matrices:
dm = DistanceMatrix(data=m, RowOrder=row_order, ColOrder=col_order)
self.assertEqual(dm.RowOrder, row_order)
self.assertEqual(dm.ColOrder, col_order)
def test_rowKeys(self):
""" rowKeys functions properly """
dm = DistanceMatrix(data={'a':{'b':1}})
goal = self.default_keys + ['a']
goal.sort()
actual = dm.rowKeys()
actual.sort()
self.assertEqual(actual,goal)
def test_colKeys(self):
""" colKeys functions properly """
dm = DistanceMatrix(data={'a':{'b':1}})
goal = self.default_keys + ['b']
goal.sort()
actual = dm.colKeys()
actual.sort()
self.assertEqual(actual,goal)
def test_sharedColKeys(self):
""" sharedColKeys functions properly """
# no shared keys b/c a is not in RowOrder and therefore not padded
dm = DistanceMatrix(data={'a':{'b':1}})
self.assertEqual(dm.sharedColKeys(),[])
# shared should be only self.default_keys b/c 'b' not in ColOrder
dm = DistanceMatrix(data={'a':{'b':1}},\
RowOrder=self.default_keys + ['a'])
actual = dm.sharedColKeys()
actual.sort()
self.assertEqual(actual, self.default_keys)
# shared should be self.default_keys + 'b'
dm = DistanceMatrix(data={'a':{'b':1}},\
RowOrder=self.default_keys + ['a'],\
ColOrder=self.default_keys + ['b'])
actual = dm.sharedColKeys()
actual.sort()
self.assertEqual(actual, self.default_keys + ['b'])
def test_default_padding(self):
""" Default padding functions as expected """
for m in self.matrices:
dm = DistanceMatrix(data=m)
for r in self.default_keys:
for c in self.default_keys:
dm[r][c]
def test_init_data_types(self):
""" Correct init from varying data types """
# No data
goal = {}.fromkeys(self.default_keys)
for r in goal:
goal[r] = {}.fromkeys(self.default_keys)
dm = DistanceMatrix()
self.assertEqual(dm,goal)
# data is dict of dicts
dm = DistanceMatrix(data={'a':{'b':1}}, Pad=False)
self.assertEqual(dm,{'a':{'b':1}})
# data is list of lists
dm = DistanceMatrix(data=[[1]],RowOrder=['a'],ColOrder=['b'], Pad=False)
self.assertEqual(dm,{'a':{'b':1}})
# data is in Indices form
dm = DistanceMatrix(data=[('a','b',1)], Pad=False)
self.assertEqual(dm,{'a':{'b':1}})
def test_sparse_init(self):
""" Init correctly from a sparse dict """
d = DistanceMatrix(data={'A':{'C':0.}})
for r in self.default_keys:
for c in self.default_keys:
if (r == 'A') and (c == 'C'):
self.assertEqual(d[r][c],0.)
else:
self.assertEqual(d[r][c],None)
def test_dict_integrity(self):
""" Integrity of key -> value pairs """
for m in self.matrices:
dm = DistanceMatrix(data=m)
self.assertEqual(dm['A']['A'], m['A']['A'])
self.assertEqual(dm['B']['C'], m['B']['C'])
def test_attribute_forwarder_integrity(self):
""" Integrity of attribute forwarding """
dm = DistanceMatrix(data=self.m2,info=self.aar)
self.assertEqual(dm.ID, '5')
self.assertEqual(dm.Correlating, [0.987, 0.783, 1., 0])
self.assertEqual(dm.Data['C'], 0.15)
def test_copy(self):
""" Copy functions as expected"""
dm = DistanceMatrix(data=self.m2, RowOrder=self.m2.keys(), info=self.aar)
c = dm.copy()
self.assertEqual(c['A']['A'],dm['A']['A'])
self.assertEqual(c.RowOrder,dm.RowOrder)
self.assertEqual(c.ColOrder,dm.ColOrder)
self.assertEqual(c.Pad,dm.Pad)
self.assertEqual(c.Power,dm.Power)
# Make sure it's a separate object
c['A']['A'] = 999
self.assertNotEqual(c['A']['A'],dm['A']['A'])
def test_attribute_forwarder_integrity_after_copy(self):
""" Integrity of attribute forwarding following a copy()"""
dm = DistanceMatrix(data=self.m2, RowOrder=self.m2.keys(), info=self.aar)
c = dm.copy()
# dm.ID == '5'
self.assertEqual(c.ID, dm.ID)
self.assertEqual(c.Correlating, dm.Correlating)
self.assertEqual(c.Data['R'], dm.Data['R'])
c.ID = '0'
self.assertNotEqual(c.ID,dm.ID)
def test_setDiag(self):
""" setDiag works as expected """
for m in self.matrices:
# create a deep copy so we can test against original
# matrix without it being effected by altering the object
# based on it
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=m.keys())
# set diag to 42
dm.setDiag(42)
# test that diag is 42
for k in dm:
self.assertEqual(dm[k][k],42)
# test that no diag is unchanged
self.assertEqual(dm['B']['A'], m['B']['A'])
self.assertEqual(dm['B']['C'], m['B']['C'])
def test_scale(self):
""" Scale correctly applies function to all elements """
for m in self.matrices:
# Test square all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
dm.scale(lambda x: x**2)
self.assertEqual(dm['A']['A'],m['A']['A']**2)
self.assertEqual(dm['B']['A'],m['B']['A']**2)
self.assertEqual(dm['B']['C'],m['B']['C']**2)
# Test cube all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
dm.scale(lambda x: x**3)
self.assertEqual(dm['A']['A'],m['A']['A']**3)
self.assertEqual(dm['B']['A'],m['B']['A']**3)
self.assertEqual(dm['B']['C'],m['B']['C']**3)
# Test linearize all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
dm.scale(lambda x: 10**-(x/10.0))
self.assertFloatEqual(dm['A']['A'],10**-(m['A']['A']/10.))
self.assertFloatEqual(dm['B']['A'],10**-(m['B']['A']/10.))
self.assertFloatEqual(dm['B']['C'],10**-(m['B']['C']/10.))
def test_elementPow_valid(self):
""" elementPow correctly scales all elements and updates self.Power"""
for m in self.matrices:
# Test square all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
Pad=False)
dm.elementPow(2)
self.assertEqual(dm.Power, 2)
self.assertEqual(dm['A']['A'],m['A']['A']**2)
self.assertEqual(dm['B']['A'],m['B']['A']**2)
self.assertEqual(dm['B']['C'],m['B']['C']**2)
# Test cube square root of all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
Pad=False)
dm.elementPow(3)
dm.elementPow(1./2.)
self.assertEqual(dm.Power, 3./2.)
self.assertEqual(dm['A']['A'],m['A']['A']**(3./2.))
self.assertEqual(dm['B']['A'],m['B']['A']**(3./2.))
self.assertEqual(dm['B']['C'],m['B']['C']**(3./2.))
def test_elementPow_ignore_invalid(self):
""" elementPow correctly detects and ignores invalid data"""
for m in self.matrices:
# Test square all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
Pad=False)
dm['A']['A'] = 'p'
dm.elementPow(2)
self.assertEqual(dm.Power, 2.)
self.assertEqual(dm['A']['A'],'p')
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
Pad=False)
dm['A']['A'] = None
dm.elementPow(2)
self.assertEqual(dm.Power, 2.)
self.assertEqual(dm['A']['A'],None)
def test_elementPow_error_on_invalid(self):
""" elementPow correctly raises error on invalid data"""
for m in self.matrices:
# Test square all elements
# explicit tests
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
Pad=False)
dm['A']['A'] = 'p'
self.assertRaises(TypeError,dm.elementPow,2,ignore_invalid=False)
dm['A']['A'] = None
self.assertRaises(TypeError,dm.elementPow,2,ignore_invalid=False)
def test_elementPow_invalid_pow(self):
""" elementPow correctly raises error on invalid power """
for m in self.matrices:
n = deepcopy(m)
dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
Pad=False)
self.assertRaises(TypeError,dm.elementPow,None,ignore_invalid=False)
self.assertRaises(TypeError,dm.elementPow,'a',ignore_invalid=False)
def test_transpose(self):
""" transpose functions as expected """
for m in self.matrices:
d = DistanceMatrix(data=m)
t = d.copy()
t.transpose()
# Note, this line will fail on a matrix where transpose = original
self.assertNotEqual(t,d)
for r in t:
for c in t[r]:
self.assertEqual(t[r][c],d[c][r])
t.transpose()
self.assertEqual(t,d)
def test_reflect(self):
""" reflect functions as expected """
for m in self.matrices:
d = DistanceMatrix(data=m)
n = d.copy()
# Only testing one method, all other are tested in superclass, so
# redundant testing is probably not necessary
n.reflect(method=largest)
for r in d.RowOrder:
for c in d.ColOrder:
if d[r][c] > d[c][r]:
goal = d[r][c]
else:
goal = d[c][r]
self.assertEqual(n[r][c],goal)
self.assertEqual(n[c][r],goal)
######
# Following tests copied (and slightly modified) from test_DistanceMatrix and
# written by Rob Knight. Intended to test inheritance
#####
def test_toDelimited(self):
"""DistanceMatrix toDelimited functions as expected"""
d = DistanceMatrix(self.square,Pad=False)
d.RowOrder = d.ColOrder = 'abc'
self.assertEqual(d.toDelimited(), \
'-\ta\tb\tc\na\t1\t2\t3\nb\t2\t4\t6\nc\t3\t6\t9')
self.assertEqual(d.toDelimited(headers=False), \
'1\t2\t3\n2\t4\t6\n3\t6\t9')
#set up a custom formatter...
def my_formatter(x):
try:
return '%1.1f' % x
except:
return str(x)
#...and use it
self.assertEqual(d.toDelimited(headers=True, item_delimiter='x', \
row_delimiter='y', formatter=my_formatter), \
'-xaxbxcyax1.0x2.0x3.0ybx2.0x4.0x6.0ycx3.0x6.0x9.0')
if __name__ == '__main__':
main()
|