File: test_distance.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (438 lines) | stat: -rw-r--r-- 16,243 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#!/usr/bin/env python
"""Unit tests for distance matrices.
"""

from cogent.util.unit_test import TestCase, main
from cogent.maths.matrix.distance import DistanceMatrix
from cogent.util.dict2d import largest, Dict2DError, Dict2DSparseError
from cogent.parse.aaindex import AAIndex1Record
from cogent.maths.stats.util import Freqs
from copy import deepcopy

__author__ = "Greg Caporaso"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Greg Caporaso", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Greg Caporaso"
__email__ = "caporaso@colorado.edu"
__status__ = "Production"

class DistanceMatrixTests(TestCase):

    def setUp(self):

        # v : vector
        # m : matrix
        self.default_keys = list('ACDEFGHIKLMNPQRSTVWY')
        # Set up some matrices
        v1 = {'A':1, 'B':2, 'C':3}
        v2 = {'A':4, 'B':5, 'C':6}
        v3 = {'A':7, 'B':8, 'C':9}
        
        self.m1 = {'A':dict(v1),\
                   'B':dict(v2),\
                   'C':dict(v3)}

        v4 = {'A':0, 'B':1, 'C':5}
        v5 = {'A':5, 'B':0, 'C':4, 'X':99}
        v6 = {'A':5, 'B':8, 'C':0}

        self.m2 = {'A':dict(v4),\
                   'B':dict(v5),\
                   'C':dict(v6)}

        self.matrices = [self.m1,self.m2]

        aar_data = dict(zip(self.default_keys, [i*.15 for i in range(20)]))
        # Setup a AAIndex1Record for testing purposes
        self.aar = AAIndex1Record("5", "Some Info",\
                "25", "Greg", "A test",\
                "something", "This is a test, this is only a test",\
                [0.987, 0.783, 1., 0], aar_data)

        # From test_Dict2D, used in tests at end of this file for 
        # inheritance testing
        self.empty = {}
        self.single_same = {'a':{'a':2}}
        self.single_diff = {'a':{'b':3}}
        self.square = {
            'a':{'a':1,'b':2,'c':3},
            'b':{'a':2,'b':4,'c':6},
            'c':{'a':3,'b':6,'c':9},
            }
        self.top_triangle = {
            'a':{'a':1, 'b':2, 'c':3},
            'b':{'b':4, 'c':6},
            'c':{'c':9}
        }
        self.bottom_triangle = {
            'b':{'a':2},
            'c':{'a':3, 'b':6}
        }
        self.sparse = {
            'a':{'a':1, 'c':3},
            'd':{'b':2},
        }
        self.dense = {
            'a':{'a':1,'b':2,'c':3},
            'b':{'a':2,'b':4,'c':6},
            }

    def test_all_init_parameters(self):
        """ All parameters to init are handled correctly """
        # will fail if any paramters are not recognized
        d = DistanceMatrix()
        d = DistanceMatrix(data={})
        d = DistanceMatrix(RowOrder=[])
        d = DistanceMatrix(ColOrder=[])
        d = DistanceMatrix(Pad=True)
        d = DistanceMatrix(Default=42)
        d = DistanceMatrix(data={},RowOrder=[],ColOrder=[],Pad=True,Default=42)

    def test_attribute_init(self):
        """ Proper initialization of all attributes """

        # proper setting to defaults
        d = DistanceMatrix(data={'a':{'a':1}})
        self.assertEqual(d.RowOrder, self.default_keys)
        self.assertEqual(d.ColOrder, self.default_keys)
        self.assertEqual(d.Pad, True)
        self.assertEqual(d.Default, None)
        self.assertEqual(d.RowConstructor, dict)

        # differ from defaults
        d = DistanceMatrix(data={'a':{'b':1}},RowOrder=['a'],\
                ColOrder=['b'],Pad=False,Default=42,RowConstructor=Freqs)
        self.assertEqual(d.RowOrder, ['a'])
        self.assertEqual(d.ColOrder, ['b'])
        self.assertEqual(d.Pad, False)
        self.assertEqual(d.Default, 42)
        self.assertEqual(d.RowConstructor, Freqs)

        # differ from defaults and no data
        d = DistanceMatrix(RowOrder=['a'],\
                ColOrder=['b'],Pad=False,Default=42,RowConstructor=Freqs)
        self.assertEqual(d.RowOrder, ['a'])
        self.assertEqual(d.ColOrder, ['b'])
        self.assertEqual(d.Pad, False)
        self.assertEqual(d.Default, 42)
        self.assertEqual(d.RowConstructor, Freqs)
    
    def test_Order_defaults(self):
        """ RowOrder and ColOrder are set to default as expected """
        for m in self.matrices:
            dm = DistanceMatrix(data=m)
            self.assertEqual(dm.RowOrder, self.default_keys)
            self.assertEqual(dm.ColOrder, self.default_keys)
                               
    def test_Order_parameters(self):
        """ RowOrder and ColOrder are set to paramters as expected """
        row_order = ['a']
        col_order = ['b']
        for m in self.matrices:
            dm = DistanceMatrix(data=m, RowOrder=row_order, ColOrder=col_order)
            self.assertEqual(dm.RowOrder, row_order)
            self.assertEqual(dm.ColOrder, col_order)

    def test_rowKeys(self):
        """ rowKeys functions properly """
        dm = DistanceMatrix(data={'a':{'b':1}})
        goal = self.default_keys + ['a']
        goal.sort()
        actual = dm.rowKeys()
        actual.sort()
        self.assertEqual(actual,goal)

    def test_colKeys(self):
        """ colKeys functions properly """
        dm = DistanceMatrix(data={'a':{'b':1}})
        goal = self.default_keys + ['b']
        goal.sort()
        actual = dm.colKeys()
        actual.sort()
        self.assertEqual(actual,goal)
        
    def test_sharedColKeys(self):
        """ sharedColKeys functions properly """
        # no shared keys b/c a is not in RowOrder and therefore not padded
        dm = DistanceMatrix(data={'a':{'b':1}})
        self.assertEqual(dm.sharedColKeys(),[])

        # shared should be only self.default_keys b/c 'b' not in ColOrder
        dm = DistanceMatrix(data={'a':{'b':1}},\
                RowOrder=self.default_keys + ['a'])
        actual = dm.sharedColKeys()
        actual.sort()
        self.assertEqual(actual, self.default_keys)

        # shared should be self.default_keys + 'b'
        dm = DistanceMatrix(data={'a':{'b':1}},\
                RowOrder=self.default_keys + ['a'],\
                ColOrder=self.default_keys + ['b'])
        actual = dm.sharedColKeys()
        actual.sort()
        self.assertEqual(actual, self.default_keys + ['b'])
    
    def test_default_padding(self):
        """ Default padding functions as expected """
        for m in self.matrices:
            dm = DistanceMatrix(data=m)
            for r in self.default_keys:
                for c in self.default_keys:
                    dm[r][c]
    
    def test_init_data_types(self):
        """ Correct init from varying data types  """
        # No data
        goal = {}.fromkeys(self.default_keys)
        for r in goal:
            goal[r] = {}.fromkeys(self.default_keys)
        dm = DistanceMatrix()
        self.assertEqual(dm,goal)

        # data is dict of dicts
        dm = DistanceMatrix(data={'a':{'b':1}}, Pad=False)
        self.assertEqual(dm,{'a':{'b':1}})

        # data is list of lists
        dm = DistanceMatrix(data=[[1]],RowOrder=['a'],ColOrder=['b'], Pad=False)
        self.assertEqual(dm,{'a':{'b':1}})
        
        # data is in Indices form
        dm = DistanceMatrix(data=[('a','b',1)], Pad=False)
        self.assertEqual(dm,{'a':{'b':1}})

    def test_sparse_init(self):
        """ Init correctly from a sparse dict """
        d = DistanceMatrix(data={'A':{'C':0.}})
        for r in self.default_keys:
            for c in self.default_keys:
                if (r == 'A') and (c == 'C'):
                    self.assertEqual(d[r][c],0.)
                else:
                    self.assertEqual(d[r][c],None)

    def test_dict_integrity(self):
        """ Integrity of key -> value pairs """
        for m in self.matrices:
            dm = DistanceMatrix(data=m)
            self.assertEqual(dm['A']['A'], m['A']['A'])
            self.assertEqual(dm['B']['C'], m['B']['C'])

    def test_attribute_forwarder_integrity(self):
        """ Integrity of attribute forwarding """
        dm = DistanceMatrix(data=self.m2,info=self.aar)
        self.assertEqual(dm.ID, '5')
        self.assertEqual(dm.Correlating, [0.987, 0.783, 1., 0])
        self.assertEqual(dm.Data['C'], 0.15)

    def test_copy(self):
        """ Copy functions as expected"""
        dm = DistanceMatrix(data=self.m2, RowOrder=self.m2.keys(), info=self.aar)
        c = dm.copy()
        self.assertEqual(c['A']['A'],dm['A']['A'])
        self.assertEqual(c.RowOrder,dm.RowOrder)
        self.assertEqual(c.ColOrder,dm.ColOrder)
        self.assertEqual(c.Pad,dm.Pad)
        self.assertEqual(c.Power,dm.Power)

        # Make sure it's a separate object
        c['A']['A'] = 999
        self.assertNotEqual(c['A']['A'],dm['A']['A'])

    def test_attribute_forwarder_integrity_after_copy(self):
        """ Integrity of attribute forwarding following a copy()"""
        dm = DistanceMatrix(data=self.m2, RowOrder=self.m2.keys(), info=self.aar)
        c = dm.copy()
       
        # dm.ID == '5'
        self.assertEqual(c.ID, dm.ID)
        self.assertEqual(c.Correlating, dm.Correlating)
        self.assertEqual(c.Data['R'], dm.Data['R'])

        c.ID = '0'
        self.assertNotEqual(c.ID,dm.ID)
    
    def test_setDiag(self):
        """ setDiag works as expected """
        for m in self.matrices:
            # create a deep copy so we can test against original
            # matrix without it being effected by altering the object 
            # based on it
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys())
            
            # set diag to 42
            dm.setDiag(42)
            # test that diag is 42
            for k in dm:
                self.assertEqual(dm[k][k],42)

            # test that no diag is unchanged
            self.assertEqual(dm['B']['A'], m['B']['A'])
            self.assertEqual(dm['B']['C'], m['B']['C'])

    def test_scale(self):
        """ Scale correctly applies function to all elements """
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
            dm.scale(lambda x: x**2)
            self.assertEqual(dm['A']['A'],m['A']['A']**2)
            self.assertEqual(dm['B']['A'],m['B']['A']**2)
            self.assertEqual(dm['B']['C'],m['B']['C']**2)

            # Test cube all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
            dm.scale(lambda x: x**3)
            self.assertEqual(dm['A']['A'],m['A']['A']**3)
            self.assertEqual(dm['B']['A'],m['B']['A']**3)
            self.assertEqual(dm['B']['C'],m['B']['C']**3)

            # Test linearize all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=m.keys(), Pad=False)
            dm.scale(lambda x: 10**-(x/10.0))
            self.assertFloatEqual(dm['A']['A'],10**-(m['A']['A']/10.))
            self.assertFloatEqual(dm['B']['A'],10**-(m['B']['A']/10.))
            self.assertFloatEqual(dm['B']['C'],10**-(m['B']['C']/10.))

    def test_elementPow_valid(self):
        """ elementPow correctly scales all elements and updates self.Power"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2)
            self.assertEqual(dm['A']['A'],m['A']['A']**2)
            self.assertEqual(dm['B']['A'],m['B']['A']**2)
            self.assertEqual(dm['B']['C'],m['B']['C']**2)

            # Test cube square root of all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm.elementPow(3)
            dm.elementPow(1./2.)
            self.assertEqual(dm.Power, 3./2.)
            self.assertEqual(dm['A']['A'],m['A']['A']**(3./2.))
            self.assertEqual(dm['B']['A'],m['B']['A']**(3./2.))
            self.assertEqual(dm['B']['C'],m['B']['C']**(3./2.))

    def test_elementPow_ignore_invalid(self):
        """ elementPow correctly detects and ignores invalid data"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm['A']['A'] = 'p'
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2.)
            self.assertEqual(dm['A']['A'],'p')

            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm['A']['A'] = None
            dm.elementPow(2)
            self.assertEqual(dm.Power, 2.)
            self.assertEqual(dm['A']['A'],None)

    def test_elementPow_error_on_invalid(self):
        """ elementPow correctly raises error on invalid data"""
        for m in self.matrices:

            # Test square all elements
            # explicit tests
            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            dm['A']['A'] = 'p'
            self.assertRaises(TypeError,dm.elementPow,2,ignore_invalid=False)
            
            dm['A']['A'] = None
            self.assertRaises(TypeError,dm.elementPow,2,ignore_invalid=False)
           
    def test_elementPow_invalid_pow(self):
        """ elementPow correctly raises error on invalid power """
        for m in self.matrices:

            n = deepcopy(m)
            dm = DistanceMatrix(data=n, RowOrder=n.keys(),ColOrder=n.keys(),\
                    Pad=False)
            self.assertRaises(TypeError,dm.elementPow,None,ignore_invalid=False)
            self.assertRaises(TypeError,dm.elementPow,'a',ignore_invalid=False)
        
    def test_transpose(self):
        """ transpose functions as expected """
        for m in self.matrices:
            d = DistanceMatrix(data=m)
            t = d.copy()
            t.transpose()
            # Note, this line will fail on a matrix where transpose = original
            self.assertNotEqual(t,d)
            for r in t:
                for c in t[r]:
                    self.assertEqual(t[r][c],d[c][r])
            t.transpose()
            self.assertEqual(t,d)

    def test_reflect(self):
        """ reflect functions as expected """
        for m in self.matrices:
            d = DistanceMatrix(data=m)
            n = d.copy()
            # Only testing one method, all other are tested in superclass, so
            # redundant testing is probably not necessary
            n.reflect(method=largest)
            for r in d.RowOrder:
                for c in d.ColOrder:
                    if d[r][c] > d[c][r]:
                        goal = d[r][c]
                    else:
                        goal = d[c][r]
                    self.assertEqual(n[r][c],goal)
                    self.assertEqual(n[c][r],goal)
        
    ######
    # Following tests copied (and slightly modified) from test_DistanceMatrix and
    # written by Rob Knight. Intended to test inheritance
    #####

    def test_toDelimited(self):
        """DistanceMatrix toDelimited functions as expected"""
        d = DistanceMatrix(self.square,Pad=False)
        d.RowOrder = d.ColOrder = 'abc'
        self.assertEqual(d.toDelimited(), \
        '-\ta\tb\tc\na\t1\t2\t3\nb\t2\t4\t6\nc\t3\t6\t9')
        self.assertEqual(d.toDelimited(headers=False), \
            '1\t2\t3\n2\t4\t6\n3\t6\t9')
        #set up a custom formatter...
        def my_formatter(x):
            try:
                return '%1.1f' % x
            except:
                return str(x)
        #...and use it
        self.assertEqual(d.toDelimited(headers=True, item_delimiter='x', \
            row_delimiter='y', formatter=my_formatter), \
            '-xaxbxcyax1.0x2.0x3.0ybx2.0x4.0x6.0ycx3.0x6.0x9.0')

if __name__ == '__main__':
    main()