1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#!/usr/bin/env python
#file test_alpha_diversity.py
from __future__ import division
from numpy import array, log, sqrt, exp
from math import e
from cogent.util.unit_test import TestCase, main
from cogent.maths.stats.alpha_diversity import expand_counts, counts, observed_species, singles, \
doubles, osd, margalef, menhinick, dominance, simpson, \
simpson_reciprocal, reciprocal_simpson,\
shannon, equitability, berger_parker_d, mcintosh_d, brillouin_d, \
strong, kempton_taylor_q, fisher_alpha, \
mcintosh_e, heip_e, simpson_e, robbins, robbins_confidence, \
chao1_uncorrected, chao1_bias_corrected, chao1, chao1_var, \
chao1_confidence, ACE, michaelis_menten_fit
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight","Justin Kuczynski"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class diversity_tests(TestCase):
"""Tests of top-level functions"""
def setUp(self):
"""Set up shared variables"""
self.TestData = array([0,1,1,4,2,5,2,4,1,2])
self.NoSingles = array([0,2,2,4,5,0,0,0,0,0])
self.NoDoubles = array([0,1,1,4,5,0,0,0,0,0])
def test_expand_counts(self):
"""expand_counts should return correct expanded array"""
c = array([2,0,1,2])
self.assertEqual(expand_counts(c), array([0,0,2,3,3]))
def test_counts(self):
"""counts should return correct array"""
c = array([5,0,1,1,5,5])
obs = counts(c)
exp = array([1,2,0,0,0,3])
self.assertEqual(obs, exp)
d = array([2,2,1,0])
obs = counts(d, obs)
exp = array([2,3,2,0,0,3])
self.assertEqual(obs, exp)
def test_singles(self):
"""singles should return correct # of singles"""
self.assertEqual(singles(self.TestData), 3)
self.assertEqual(singles(array([0,3,4])), 0)
self.assertEqual(singles(array([1])), 1)
def test_doubles(self):
"""doubles should return correct # of doubles"""
self.assertEqual(doubles(self.TestData), 3)
self.assertEqual(doubles(array([0,3,4])), 0)
self.assertEqual(doubles(array([2])), 1)
def test_osd(self):
"""osd should return correct # of observeds, singles, doubles"""
self.assertEqual(osd(self.TestData), (9,3,3))
def test_margalef(self):
"""margalef should match hand-calculated values"""
self.assertEqual(margalef(self.TestData), 8/log(22))
def test_menhinick(self):
"""menhinick should match hand-calculated values"""
self.assertEqual(menhinick(self.TestData), 9/sqrt(22))
def test_dominance(self):
"""dominance should match hand-calculated values"""
c = array([1,0,2,5,2])
self.assertFloatEqual(dominance(c), .34)
d = array([5])
self.assertEqual(dominance(d), 1)
def test_simpson(self):
"""simpson should match hand-calculated values"""
c = array([1,0,2,5,2])
self.assertFloatEqual(simpson(c), .66)
d = array([5])
self.assertFloatEqual(simpson(d), 0)
def test_reciprocal_simpson(self):
"""reciprocal_simpson should match hand-calculated results"""
c = array([1,0,2,5,2])
self.assertFloatEqual(reciprocal_simpson(c), 1/.66)
def test_simpson_reciprocal(self):
"""simpson_reciprocal should match 1/D results"""
c = array([1,0,2,5,2])
self.assertFloatEqual(simpson_reciprocal(c), 1./dominance(c))
def test_shannon(self):
"""shannon should match hand-calculated values"""
c = array([5])
self.assertFloatEqual(shannon(c), 0)
c = array([5,5])
self.assertFloatEqual(shannon(c), 1)
c = array([1,1,1,1,0])
self.assertEqual(shannon(c), 2)
def test_equitability(self):
"""equitability should match hand-calculated values"""
c = array([5])
self.assertFloatEqual(equitability(c), 0)
c = array([5,5])
self.assertFloatEqual(equitability(c), 1)
c = array([1,1,1,1,0])
self.assertEqual(equitability(c), 1)
def test_berger_parker_d(self):
"""berger-parker_d should match hand-calculated values"""
c = array([5])
self.assertFloatEqual(berger_parker_d(c), 1)
c = array([5,5])
self.assertFloatEqual(berger_parker_d(c), 0.5)
c = array([1,1,1,1,0])
self.assertEqual(berger_parker_d(c), 0.25)
def test_mcintosh_d(self):
"""mcintosh_d should match hand-calculated values"""
c = array([1,2,3])
self.assertFloatEqual(mcintosh_d(c), 0.636061424871458)
def test_brillouin_d(self):
"""brillouin_d should match hand-calculated values"""
c = array([1,2,3,1])
self.assertFloatEqual(brillouin_d(c), 0.86289353018248782)
def test_strong(self):
"""strong's dominance index should match hand-calculated values"""
c = array([1,2,3,1])
self.assertFloatEqual(strong(c), 0.214285714)
def test_kempton_taylor_q(self):
"""kempton_taylor_q should approximate Magurran 1998 calculation p143"""
c = array([2,3,3,3,3,3,4,4,4,6,6,7,7,9,9,11,14,15,15,20,29,33,34,
36,37,53,57,138,146,170])
self.assertFloatEqual(kempton_taylor_q(c), 14/log(34/4))
def test_fisher_alpha(self):
"""fisher alpha should match hand-calculated value."""
c = array([4,3,4,0,1,0,2])
obs = fisher_alpha(c)
self.assertFloatEqual(obs, 2.7823795367398798)
def test_mcintosh_e(self):
"""mcintosh e should match hand-calculated value."""
c = array([1,2,3,1])
num = sqrt(15)
den = sqrt(19)
exp = num/den
self.assertEqual(mcintosh_e(c), exp)
def test_heip_e(self):
"""heip e should match hand-calculated value"""
c = array([1,2,3,1])
h = shannon(c, base=e)
expected = exp(h-1)/3
self.assertEqual(heip_e(c), expected)
def test_simpson_e(self):
"""simpson e should match hand-calculated value"""
c = array([1,2,3,1])
s = simpson(c)
self.assertEqual((1/s)/4, simpson_e(c))
def test_robbins(self):
"""robbins metric should match hand-calculated value"""
c = array([1,2,3,0,1])
r = robbins(c)
self.assertEqual(r,2./7)
def test_robbins_confidence(self):
"""robbins CI should match hand-calculated value"""
c = array([1,2,3,0,1])
r = robbins_confidence(c, 0.05)
n = 7
s = 2
k = sqrt(8/0.05)
self.assertEqual(r, ((s-k)/(n+1), (s+k)/(n+1)))
def test_observed_species(self):
"""observed_species should return # observed species"""
c = array([4,3,4,0,1,0,2])
obs = observed_species(c)
exp = 5
self.assertEqual(obs, exp)
c = array([0,0,0])
obs = observed_species(c)
exp = 0
self.assertEqual(obs, exp)
self.assertEqual(observed_species(self.TestData), 9)
def test_chao1_bias_corrected(self):
"""chao1_bias_corrected should return same result as EstimateS"""
obs = chao1_bias_corrected(*osd(self.TestData))
self.assertEqual(obs, 9.75)
def test_chao1_uncorrected(self):
"""chao1_uncorrected should return same result as EstimateS"""
obs = chao1_uncorrected(*osd(self.TestData))
self.assertEqual(obs, 10.5)
def test_chao1(self):
"""chao1 should use right decision rules"""
self.assertEqual(chao1(self.TestData), 9.75)
self.assertEqual(chao1(self.TestData,bias_corrected=False),10.5)
self.assertEqual(chao1(self.NoSingles), 4)
self.assertEqual(chao1(self.NoSingles,bias_corrected=False),4)
self.assertEqual(chao1(self.NoDoubles), 5)
self.assertEqual(chao1(self.NoDoubles,bias_corrected=False),5)
def test_chao1_var(self):
"""chao1_var should match observed results from EstimateS"""
#NOTE: EstimateS reports sd, not var, and rounds to 2 dp
self.assertFloatEqual(chao1_var(self.TestData), 1.42**2, eps=0.01)
self.assertFloatEqual(chao1_var(self.TestData,bias_corrected=False),\
2.29**2, eps=0.01)
self.assertFloatEqualAbs(chao1_var(self.NoSingles), 0.39**2, eps=0.01)
self.assertFloatEqualAbs(chao1_var(self.NoSingles, \
bias_corrected=False), 0.39**2, eps=0.01)
self.assertFloatEqualAbs(chao1_var(self.NoDoubles), 2.17**2, eps=0.01)
self.assertFloatEqualAbs(chao1_var(self.NoDoubles, \
bias_corrected=False), 2.17**2, eps=0.01)
def test_chao1_confidence(self):
"""chao1_confidence should match observed results from EstimateS"""
#NOTE: EstimateS rounds to 2 dp
self.assertFloatEqual(chao1_confidence(self.TestData), (9.07,17.45), \
eps=0.01)
self.assertFloatEqual(chao1_confidence(self.TestData, \
bias_corrected=False), (9.17,21.89), eps=0.01)
self.assertFloatEqualAbs(chao1_confidence(self.NoSingles),\
(4, 4.95), eps=0.01)
self.assertFloatEqualAbs(chao1_confidence(self.NoSingles, \
bias_corrected=False), (4,4.95), eps=0.01)
self.assertFloatEqualAbs(chao1_confidence(self.NoDoubles), \
(4.08,17.27), eps=0.01)
self.assertFloatEqualAbs(chao1_confidence(self.NoDoubles, \
bias_corrected=False), (4.08,17.27), eps=0.01)
def test_ACE(self):
"""ACE should match values calculated by hand"""
self.assertFloatEqual(ACE(array([2,0])), 1.0, eps=0.001)
# next: just returns the number of species when all are abundant
self.assertFloatEqual(ACE(array([12,0,9])), 2.0, eps=0.001)
self.assertFloatEqual(ACE(array([12,2,8])), 3.0, eps=0.001)
self.assertFloatEqual(ACE(array([12,2,1])), 4.0, eps=0.001)
self.assertFloatEqual(ACE(array([12,1,2,1])), 7.0, eps=0.001)
self.assertFloatEqual(ACE(array([12,3,2,1])), 4.6, eps=0.001)
self.assertFloatEqual(ACE(array([12,3,6,1,10])), 5.62749672, eps=0.001)
def test_michaelis_menten_fit(self):
""" michaelis_menten_fit should match hand values in limiting cases"""
res = michaelis_menten_fit([22])
self.assertFloatEqual(res,1.0,eps=.01)
res = michaelis_menten_fit([42])
self.assertFloatEqual(res,1.0,eps=.01)
res = michaelis_menten_fit([34],num_repeats=3,params_guess=[13,13])
self.assertFloatEqual(res,1.0,eps=.01)
res = michaelis_menten_fit([70,70],num_repeats=5)
self.assertFloatEqual(res,2.0,eps=.01)
if __name__ == '__main__':
main()
|