1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
#!/usr/bin/env python
"""Unit tests of the basic CAI calculations."""
from cogent.util.unit_test import TestCase, main
from math import log, exp
from operator import mul
from cogent.maths.stats.cai.util import cu, as_rna, synonyms_to_rna, \
get_synonyms, sum_codon_freqs, norm_to_max, arithmetic_mean, \
geometric_mean, codon_adaptiveness_all, codon_adaptiveness_blocks, \
valid_codons, set_min, cai_1, cai_2, cai_3
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
def product(x): return reduce(mul, x)
def amean(x): return sum(x)/float(len(x))
def gmean(x): return (product(x))**(1./len(x))
class cai_tests(TestCase):
"""Tests of top-level functionality."""
def test_as_rna(self):
"""as_rna should do correct conversion to RNA"""
self.assertEqual(as_rna('TCGT'), 'UCGU')
def test_synonyms_to_rna(self):
"""synonyms_to_rna should convert as expected"""
s = {'*':['TAA','TAG'], 'F':['TTT','TTC']}
self.assertEqual(synonyms_to_rna(s), {'*':['UAA','UAG'],'F':['UUU','UUC']})
def test_synonyms(self):
"""synonyms should produce correct results for standard genetic code.
NOTE: for standard genetic code, expect the following:
- Stop codons are UGA, UAA, UAG
- Single-codon blocs are M = 'AUG', W = 'UGG'
"""
result = get_synonyms()
self.assertEqual(len(result), 18)
self.assertEqual(''.join(sorted(result)), 'ACDEFGHIKLNPQRSTVY')
self.assertEqual(sorted(result['I']), ['AUA','AUC','AUU'])
#check that we can do it without eliminating single-codon blocks
result = get_synonyms(singles_removed=False)
self.assertEqual(len(result), 20)
self.assertEqual(''.join(sorted(result)), 'ACDEFGHIKLMNPQRSTVWY')
self.assertEqual(sorted(result['I']), ['AUA','AUC','AUU'])
self.assertEqual(result['W'], ['UGG'])
def test_sum_codon_freqs(self):
"""sum_codon_freqs should add list of codon freqs together, incl, missing keys"""
d = {'x':3, 'UUU':5, 'UAC':3}
d2 = {'y':5, 'UUU':1, 'AGG':2}
result = sum_codon_freqs([d,d2])
self.assertEqual(len(result), 64)
assert 'x' not in result #should exclude bad keys
self.assertEqual(result['UUU'], 6.0)
self.assertEqual(result['AGG'], 2.0)
self.assertEqual(result['UAC'], 3.0)
self.assertEqual(sum(result.values()), 11.0)
def test_norm_to_max(self):
"""norm_to_max should normalize vals in list to best val"""
a = [1,2,3,4]
self.assertEqual(norm_to_max(a), [.25,.5,.75,1])
def test_arithmetic_mean(self):
"""arithmetic_mean should average a list of means with freqs"""
obs = arithmetic_mean([1,2,3],[2,1,3])
exp = sum([1,1,2,3,3,3])/6.0
self.assertEqual(obs, exp)
#should also work without freqs
self.assertFloatEqual(arithmetic_mean([1,3,7]), 11/3.)
def test_geometric_mean(self):
"""geometric_mean should average a list of means with freqs"""
obs = geometric_mean([1,2,3],[2,1,3])
exp = (1*1*2*3*3*3)**(1/6.)
self.assertEqual(obs, exp)
obs = geometric_mean([0.01, 0.2, 0.5], [5, 2, 3])
exp = (.01*.01*.01*.01*.01*.2*.2*.5*.5*.5)**(0.1)
self.assertFloatEqual(obs,exp)
#should also work without freqs
self.assertFloatEqual(geometric_mean([0.01,0.2,0.5]), (.01*.2*.5)**(1/3.))
def test_codon_adaptiveness_all(self):
"""codon_adaptiveness_all should normalize all codons relative to the best one."""
codons = {'x':4, 'y':3, 'z':2, 'zz':0, 'zzz':4}
result = codon_adaptiveness_all(codons)
self.assertEqual(result, {'x':1., 'y':.75, 'z':.5, 'zz':0, 'zzz':1.})
def test_codon_adaptiveness_blocks(self):
"""codon_adaptiveness_blocks should normalize codons by the best in each block"""
codons = {'x':4, 'y':1, 'z':2, 'zz':0, 'zzz':2, 'zzzz':1}
blocks = {'A': ['x','y','z'], 'B':['zz','zzz','zzzz']}
result = codon_adaptiveness_blocks(codons, blocks)
self.assertEqual(result, {'x':1., 'y':.25, 'z':.5, 'zz':0, 'zzz':1., 'zzzz':.5})
def test_set_min(self):
"""set_min should set minimum value to specified threshold."""
codons = {'x':4, 'y':1e-5, 'z':0}
set_min(codons, 1)
self.assertEqual(codons, {'x':4, 'y':1, 'z':1})
def test_valid_codons(self):
"""valid_codons should extract all valid codons from blocks"""
blocks = {'A':['GCA','GCG'], 'C':['UGU','UGC']}
self.assertEqual(list(sorted(valid_codons(blocks))), ['GCA','GCG','UGC','UGU'])
def test_cai_1(self):
"""cai_1 should produce expected results"""
ref_freqs = cu.copy()
ref_freqs.update({'AGA':4, 'AGG':2, 'CCC':4, 'CCA':1, 'UGG':1})
#tests with arithmetic mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 0.75)
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 0.625)
ref_freqs_2 = cu.copy()
ref_freqs_2.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_1(ref_freqs_2, gene_freqs, average=arithmetic_mean)
vals = [.8,.8,.8,.4,1,1,.2,.4,.2,.2]
expect = sum(vals)/len(vals)
self.assertFloatEqual(obs, expect)
#tests with geometric mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertFloatEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), \
(1**5 * 0.5**5)**(0.1))
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertFloatEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), \
(1**5 * 0.25**5)**0.1)
ref_freqs_2 = cu.copy()
ref_freqs_2.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_1(ref_freqs_2, gene_freqs, average=geometric_mean)
vals = [.8,.8,.8,.4,1,1,.2,.4,.2,.2]
expect = (product(vals))**(1./len(vals))
self.assertFloatEqual(obs, expect)
def test_cai_2(self):
"""cai_2 should produce expected results"""
ref_freqs = cu.copy()
ref_freqs.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
#tests with arithmetic mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 0.75)
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 0.6)
ref_freqs_2 = ref_freqs.copy()
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_2(ref_freqs_2, gene_freqs, average=arithmetic_mean)
vals = [1,1,1,.5,1,1,.2,1,.5,.5]
expect = sum(vals)/len(vals)
self.assertEqual(obs, expect)
#tests with geometric mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertFloatEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), \
(1**5 * 0.5**5)**(0.1))
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertFloatEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), \
(1**5 * 0.2**5)**0.1)
ref_freqs_2 = ref_freqs.copy()
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_2(ref_freqs_2, gene_freqs, average=geometric_mean)
vals = [1,1,1,.5,1,1,.2,1,.5,.5]
expect = (product(vals))**(1./len(vals))
self.assertEqual(obs, expect)
#test that results match example on Gang Wu's CAI calculator page
ref_freqs = cu.copy()
ref_freqs.update({'UUU':78743, 'UUC':56591, 'UUA':51320, 'UUG':45581, \
'CUU':42704, 'CUC':35873, 'CUA':15275, 'CUG':168885})
gene_freqs={'UUU':6, 'UUC':3, 'CUU':3, 'CUC':2, 'CUG':8}
self.assertFloatEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), \
exp((6*log(1) + 3*log(56591./78743) + 3*log(42704./168885) + \
2*log(35873./168885)+8*log(1))/22.))
def test_cai_3(self):
"""cai_3 should produce expected results"""
ref_freqs = cu.copy()
ref_freqs.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
#tests with arithmetic mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 0.75)
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 0.6)
ref_freqs_2 = ref_freqs.copy()
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_3(ref_freqs_2, gene_freqs, average=arithmetic_mean)
family_vals = [[1,1,1,.5],[1,1,.2],[1,.5,.5]]
family_averages = map(amean, family_vals)
expect = amean(family_averages)
self.assertEqual(obs, expect)
#tests with geometric mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), \
(1**5 * 0.5**5)**(0.1))
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), \
(1**5 * 0.2**5)**0.1)
ref_freqs_2 = ref_freqs.copy()
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_3(ref_freqs_2, gene_freqs, average=geometric_mean)
family_vals = [[1,1,1,.5],[1,1,.2],[1,.5,.5]]
family_averages = map(gmean, family_vals)
expect = gmean(family_averages)
self.assertEqual(obs, expect)
#tests with Eyre-Walker's variant -- should be same as geometric mean
gene_freqs = {'AGA':1}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 1)
gene_freqs = {'AGA':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 1)
gene_freqs = {'AGG':5}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 0.5)
gene_freqs = {'AGG':5,'AGA':5}
self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), \
(1**5 * 0.5**5)**(0.1))
gene_freqs={'AGA':5,'CCC':1}
self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 1)
gene_freqs={'AGA':5,'CCA':5}
self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), \
(1**5 * 0.2**5)**0.1)
ref_freqs_2 = ref_freqs.copy()
ref_freqs_2.update({'UUU':2,'UUC':1})
gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
obs = cai_3(ref_freqs_2, gene_freqs, average='eyre_walker')
family_vals = [[1,1,1,.5],[1,1,.2],[1,.5,.5]]
family_averages = map(gmean, family_vals)
expect = gmean(family_averages)
self.assertEqual(obs, expect)
#test results for Gang Wu's example (unfortunately, no worked example for
#this model)
ref_freqs = cu.copy()
ref_freqs.update({'UUU':78743, 'UUC':56591, 'UUA':51320, 'UUG':45581, \
'CUU':42704, 'CUC':35873, 'CUA':15275, 'CUG':168885})
gene_freqs={'UUU':6, 'UUC':3, 'CUU':3, 'CUC':2, 'CUG':8}
obs = cai_3(ref_freqs, gene_freqs, average=geometric_mean)
family_vals = [6*[1]+3*[56591./78743],\
3*[42704./168885] + 2*[35873./168885]+8*[1]]
family_averages = map(gmean, family_vals)
expect = gmean(family_averages)
self.assertFloatEqual(obs, expect)
if __name__ == '__main__':
main()
|