File: test_util.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (305 lines) | stat: -rw-r--r-- 14,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python
"""Unit tests of the basic CAI calculations."""
from cogent.util.unit_test import TestCase, main
from math import log, exp
from operator import mul
from cogent.maths.stats.cai.util import cu, as_rna, synonyms_to_rna, \
    get_synonyms, sum_codon_freqs, norm_to_max, arithmetic_mean, \
    geometric_mean, codon_adaptiveness_all, codon_adaptiveness_blocks, \
    valid_codons, set_min, cai_1, cai_2, cai_3

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"


def product(x): return reduce(mul, x)
def amean(x): return sum(x)/float(len(x))
def gmean(x): return (product(x))**(1./len(x))

class cai_tests(TestCase):
    """Tests of top-level functionality."""

    def test_as_rna(self):
        """as_rna should do correct conversion to RNA"""
        self.assertEqual(as_rna('TCGT'), 'UCGU')

    def test_synonyms_to_rna(self):
        """synonyms_to_rna should convert as expected"""
        s = {'*':['TAA','TAG'], 'F':['TTT','TTC']}
        self.assertEqual(synonyms_to_rna(s), {'*':['UAA','UAG'],'F':['UUU','UUC']})

    def test_synonyms(self):
        """synonyms should produce correct results for standard genetic code.
        
        NOTE: for standard genetic code, expect the following:
        - Stop codons are UGA, UAA, UAG
        - Single-codon blocs are M = 'AUG', W = 'UGG'
        """
        result = get_synonyms()
        self.assertEqual(len(result), 18)
        self.assertEqual(''.join(sorted(result)), 'ACDEFGHIKLNPQRSTVY')
        self.assertEqual(sorted(result['I']), ['AUA','AUC','AUU'])

        #check that we can do it without eliminating single-codon blocks
        result = get_synonyms(singles_removed=False)
        self.assertEqual(len(result), 20)
        self.assertEqual(''.join(sorted(result)), 'ACDEFGHIKLMNPQRSTVWY')
        self.assertEqual(sorted(result['I']), ['AUA','AUC','AUU'])
        self.assertEqual(result['W'], ['UGG'])

    def test_sum_codon_freqs(self):
        """sum_codon_freqs should add list of codon freqs together, incl, missing keys"""
        d = {'x':3, 'UUU':5, 'UAC':3}
        d2 = {'y':5, 'UUU':1, 'AGG':2}
        result = sum_codon_freqs([d,d2])
        self.assertEqual(len(result), 64)
        assert 'x' not in result    #should exclude bad keys
        self.assertEqual(result['UUU'], 6.0)
        self.assertEqual(result['AGG'], 2.0)
        self.assertEqual(result['UAC'], 3.0)
        self.assertEqual(sum(result.values()), 11.0)

    def test_norm_to_max(self):
        """norm_to_max should normalize vals in list to best val"""
        a = [1,2,3,4]
        self.assertEqual(norm_to_max(a), [.25,.5,.75,1])

    def test_arithmetic_mean(self):
        """arithmetic_mean should average a list of means with freqs"""
        obs = arithmetic_mean([1,2,3],[2,1,3])
        exp = sum([1,1,2,3,3,3])/6.0
        self.assertEqual(obs, exp)
        #should also work without freqs
        self.assertFloatEqual(arithmetic_mean([1,3,7]), 11/3.)

    def test_geometric_mean(self):
        """geometric_mean should average a list of means with freqs"""
        obs = geometric_mean([1,2,3],[2,1,3])
        exp = (1*1*2*3*3*3)**(1/6.)
        self.assertEqual(obs, exp)
        obs = geometric_mean([0.01, 0.2, 0.5], [5, 2, 3])
        exp = (.01*.01*.01*.01*.01*.2*.2*.5*.5*.5)**(0.1)
        self.assertFloatEqual(obs,exp)
        #should also work without freqs
        self.assertFloatEqual(geometric_mean([0.01,0.2,0.5]), (.01*.2*.5)**(1/3.))

    def test_codon_adaptiveness_all(self):
        """codon_adaptiveness_all should normalize all codons relative to the best one."""
        codons = {'x':4, 'y':3, 'z':2, 'zz':0, 'zzz':4}
        result = codon_adaptiveness_all(codons)
        self.assertEqual(result, {'x':1., 'y':.75, 'z':.5, 'zz':0, 'zzz':1.})

    def test_codon_adaptiveness_blocks(self):
        """codon_adaptiveness_blocks should normalize codons by the best in each block"""
        codons = {'x':4, 'y':1, 'z':2, 'zz':0, 'zzz':2, 'zzzz':1}
        blocks = {'A': ['x','y','z'], 'B':['zz','zzz','zzzz']}
        result = codon_adaptiveness_blocks(codons, blocks)
        self.assertEqual(result, {'x':1., 'y':.25, 'z':.5, 'zz':0, 'zzz':1., 'zzzz':.5})

    def test_set_min(self):
        """set_min should set minimum value to specified threshold."""
        codons = {'x':4, 'y':1e-5, 'z':0}
        set_min(codons, 1)
        self.assertEqual(codons, {'x':4, 'y':1, 'z':1})

    def test_valid_codons(self):
        """valid_codons should extract all valid codons from blocks"""
        blocks = {'A':['GCA','GCG'], 'C':['UGU','UGC']}
        self.assertEqual(list(sorted(valid_codons(blocks))), ['GCA','GCG','UGC','UGU'])

    def test_cai_1(self):
        """cai_1 should produce expected results"""
        ref_freqs = cu.copy()
        ref_freqs.update({'AGA':4, 'AGG':2, 'CCC':4, 'CCA':1, 'UGG':1})
        #tests with arithmetic mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 0.75)
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=arithmetic_mean), 0.625)
        ref_freqs_2 = cu.copy()
        ref_freqs_2.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_1(ref_freqs_2, gene_freqs, average=arithmetic_mean)
        vals = [.8,.8,.8,.4,1,1,.2,.4,.2,.2]
        expect = sum(vals)/len(vals)
        self.assertFloatEqual(obs, expect)
        #tests with geometric mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertFloatEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), \
            (1**5 * 0.5**5)**(0.1))
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertFloatEqual(cai_1(ref_freqs, gene_freqs, average=geometric_mean), \
            (1**5 * 0.25**5)**0.1)
        ref_freqs_2 = cu.copy()
        ref_freqs_2.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_1(ref_freqs_2, gene_freqs, average=geometric_mean)
        vals = [.8,.8,.8,.4,1,1,.2,.4,.2,.2]
        expect = (product(vals))**(1./len(vals))
        self.assertFloatEqual(obs, expect)

    def test_cai_2(self):
        """cai_2 should produce expected results"""
        ref_freqs = cu.copy()
        ref_freqs.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
        #tests with arithmetic mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 0.75)
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=arithmetic_mean), 0.6)
        ref_freqs_2 = ref_freqs.copy()
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_2(ref_freqs_2, gene_freqs, average=arithmetic_mean)
        vals = [1,1,1,.5,1,1,.2,1,.5,.5]
        expect = sum(vals)/len(vals)
        self.assertEqual(obs, expect)
        #tests with geometric mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertFloatEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), \
            (1**5 * 0.5**5)**(0.1))
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertFloatEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), \
            (1**5 * 0.2**5)**0.1)
        ref_freqs_2 = ref_freqs.copy()
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_2(ref_freqs_2, gene_freqs, average=geometric_mean)
        vals = [1,1,1,.5,1,1,.2,1,.5,.5]
        expect = (product(vals))**(1./len(vals))
        self.assertEqual(obs, expect)
        #test that results match example on Gang Wu's CAI calculator page
        ref_freqs = cu.copy()
        ref_freqs.update({'UUU':78743, 'UUC':56591, 'UUA':51320, 'UUG':45581, \
            'CUU':42704, 'CUC':35873, 'CUA':15275, 'CUG':168885})
        gene_freqs={'UUU':6, 'UUC':3, 'CUU':3, 'CUC':2, 'CUG':8}
        self.assertFloatEqual(cai_2(ref_freqs, gene_freqs, average=geometric_mean), \
            exp((6*log(1) + 3*log(56591./78743) + 3*log(42704./168885) + \
            2*log(35873./168885)+8*log(1))/22.))

    def test_cai_3(self):
        """cai_3 should produce expected results"""
        ref_freqs = cu.copy()
        ref_freqs.update({'AGA':4, 'AGG':2, 'CCC':5, 'CCA':1, 'UGG':1})
        #tests with arithmetic mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 0.75)
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=arithmetic_mean), 0.6)
        ref_freqs_2 = ref_freqs.copy()
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_3(ref_freqs_2, gene_freqs, average=arithmetic_mean)
        family_vals = [[1,1,1,.5],[1,1,.2],[1,.5,.5]]
        family_averages = map(amean, family_vals)
        expect = amean(family_averages)
        self.assertEqual(obs, expect)
        #tests with geometric mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), \
            (1**5 * 0.5**5)**(0.1))
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average=geometric_mean), \
            (1**5 * 0.2**5)**0.1)
        ref_freqs_2 = ref_freqs.copy()
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_3(ref_freqs_2, gene_freqs, average=geometric_mean)
        family_vals = [[1,1,1,.5],[1,1,.2],[1,.5,.5]]
        family_averages = map(gmean, family_vals)
        expect = gmean(family_averages)
        self.assertEqual(obs, expect)
        #tests with Eyre-Walker's variant -- should be same as geometric mean
        gene_freqs = {'AGA':1}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 1)
        gene_freqs = {'AGA':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 1)
        gene_freqs = {'AGG':5}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 0.5)
        gene_freqs = {'AGG':5,'AGA':5}
        self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), \
            (1**5 * 0.5**5)**(0.1))
        gene_freqs={'AGA':5,'CCC':1}
        self.assertEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), 1)
        gene_freqs={'AGA':5,'CCA':5}
        self.assertFloatEqual(cai_3(ref_freqs, gene_freqs, average='eyre_walker'), \
            (1**5 * 0.2**5)**0.1)
        ref_freqs_2 = ref_freqs.copy()
        ref_freqs_2.update({'UUU':2,'UUC':1})
        gene_freqs = {'AGA':3,'AGG':1,'CCC':2,'CCA':1,'UUU':1, 'UUC':2}
        obs = cai_3(ref_freqs_2, gene_freqs, average='eyre_walker')
        family_vals = [[1,1,1,.5],[1,1,.2],[1,.5,.5]]
        family_averages = map(gmean, family_vals)
        expect = gmean(family_averages)
        self.assertEqual(obs, expect)
        #test results for Gang Wu's example (unfortunately, no worked example for
        #this model)
        ref_freqs = cu.copy()
        ref_freqs.update({'UUU':78743, 'UUC':56591, 'UUA':51320, 'UUG':45581, \
            'CUU':42704, 'CUC':35873, 'CUA':15275, 'CUG':168885})
        gene_freqs={'UUU':6, 'UUC':3, 'CUU':3, 'CUC':2, 'CUG':8}
        obs = cai_3(ref_freqs, gene_freqs, average=geometric_mean)
        family_vals =  [6*[1]+3*[56591./78743],\
            3*[42704./168885] + 2*[35873./168885]+8*[1]]
        family_averages = map(gmean, family_vals)
        expect = gmean(family_averages)
        self.assertFloatEqual(obs, expect)

if __name__ == '__main__':
    main()