File: test_fast_tree.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (630 lines) | stat: -rw-r--r-- 26,434 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#!/usr/bin/env python
"""Unit tests for fast tree."""

from cogent.util.unit_test import TestCase, main
from cogent.parse.tree import DndParser
from cogent.maths.unifrac.fast_tree import (count_envs, sum_env_dict, 
    index_envs, get_branch_lengths, index_tree, bind_to_array, 
    bind_to_parent_array, _is_parent_empty, delete_empty_parents,
    traverse_reduce, bool_descendants, sum_descendants, fitch_descendants, 
    tip_distances, UniFracTreeNode, FitchCounter, FitchCounterDense,
    permute_selected_rows, prep_items_for_jackknife, jackknife_bool, 
    jackknife_int, unifrac, unnormalized_unifrac, PD, G, unnormalized_G, 
    unifrac_matrix, unifrac_vector, PD_vector, weighted_unifrac, 
    weighted_unifrac_matrix, weighted_unifrac_vector, jackknife_array, 
    env_unique_fraction, unifrac_one_sample, weighted_one_sample)
from numpy import (arange, reshape, zeros, logical_or, array, sum, nonzero, 
    flatnonzero, newaxis)
from numpy.random import permutation    

__author__ = "Rob Knight and Micah Hamady"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Micah Hamady"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight, Micah Hamady"
__email__ = "rob@spot.colorado.edu, hamady@colorado.edu"
__status__ = "Prototype"

class fast_tree_tests(TestCase):
    """Tests of top-level functions"""
    def setUp(self):
        """Define a couple of standard trees"""
        self.t1 = DndParser('(((a,b),c),(d,e))', UniFracTreeNode)
        self.t2 = DndParser('(((a,b),(c,d)),(e,f))', UniFracTreeNode)
        self.t3 = DndParser('(((a,b,c),(d)),(e,f))', UniFracTreeNode)
        self.t4 = DndParser('((c)b,((f,g,h)e,i)d)', UniFracTreeNode)
        self.t4.Name = 'a'
        self.t_str = '((a:1,b:2):4,(c:3,(d:1,e:1):2):3)'

        self.t = DndParser(self.t_str, UniFracTreeNode)
        self.env_str = """
a   A   1
a   C   2
b   A   1
b   B   1
c   B   1
d   B   3
e   C   1"""
        self.env_counts = count_envs(self.env_str.splitlines())
        self.node_index, self.nodes = index_tree(self.t)
        self.count_array, self.unique_envs, self.env_to_index, \
            self.node_to_index = index_envs(self.env_counts, self.node_index)
        self.branch_lengths = get_branch_lengths(self.node_index)

        self.old_t_str = '((org1:0.11,org2:0.22,(org3:0.12,org4:0.23)g:0.33)b:0.2,(org5:0.44,org6:0.55)c:0.3,org7:0.4)'


        self.old_t = DndParser(self.old_t_str, UniFracTreeNode)
        self.old_env_str = """
org1    env1    1
org1    env2    1
org2    env2    1
org3    env2    1
org4    env3    1
org5    env1    1
org6    env1    1
org7    env3    1
"""
        self.old_env_counts = count_envs(self.old_env_str.splitlines())
        self.old_node_index, self.old_nodes = index_tree(self.old_t)
        self.old_count_array, self.old_unique_envs, self.old_env_to_index, \
            self.old_node_to_index = index_envs(self.old_env_counts, self.old_node_index)
        self.old_branch_lengths = get_branch_lengths(self.old_node_index)




    def test_traverse(self):
        """traverse should work iterative or recursive"""
        stti = self.t4.traverse
        stt = self.t4.traverse_recursive
        obs = [i.Name for i in stt(self_before=False, self_after=False)]
        exp = [i.Name for i in stti(self_before=False, self_after=False)]
        self.assertEqual(obs, exp)
        obs = [i.Name for i in stt(self_before=True, self_after=False)]
        exp = [i.Name for i in stti(self_before=True, self_after=False)]
        self.assertEqual(obs, exp)
        obs = [i.Name for i in stt(self_before=False, self_after=True)]
        exp = [i.Name for i in stti(self_before=False, self_after=True)]
        self.assertEqual(obs, exp)
        obs = [i.Name for i in stt(self_before=True, self_after=True)]
        exp = [i.Name for i in stti(self_before=True, self_after=True)]
        self.assertEqual(obs, exp)

    def test_count_envs(self):
        """count_envs should return correct counts from lines"""
        envs = """
a   A   3   some other junk
a   B 
a   C   1
b   A   2

skip
c   B
d
b   A   99
"""
        result = count_envs(envs.splitlines())
        self.assertEqual(result, \
            {'a':{'A':3,'B':1,'C':1},'b':{'A':99},'c':{'B':1}})

    def test_sum_env_dict(self):
        """sum_env_dict should return correct counts from env_dict"""
        envs = """
a   A   3   some other junk
a   B 
a   C   1
b   A   2

skip
c   B
d
b   A   99
"""
        result = count_envs(envs.splitlines())
        sum_ = sum_env_dict(result)
        self.assertEqual(sum_, 105) 

    def test_index_envs(self):
        """index_envs should map envs and taxa onto indices"""
        self.assertEqual(self.unique_envs, ['A','B','C'])
        self.assertEqual(self.env_to_index, {'A':0, 'B':1, 'C':2})
        self.assertEqual(self.node_to_index,{'a':0, 'b':1, 'c':4, 'd':2, 'e':3})
        self.assertEqual(self.count_array, \
            array([[1,0,2],[1,1,0],[0,3,0],[0,0,1], \
            [0,1,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]]))

    def test_get_branch_lengths(self):
        """get_branch_lengths should make array of branch lengths from index"""
        result = get_branch_lengths(self.node_index)
        self.assertEqual(result, array([1,2,1,1,3,2,4,3,0]))

    def test_env_unique_fraction(self):
        """should report unique fraction of bl in each env """
        # testing old unique fraction   
        cur_count_array = self.count_array.copy()
        bound_indices = bind_to_array(self.nodes, cur_count_array) 
        total_bl = sum(self.branch_lengths)
        bool_descendants(bound_indices)
        env_bl_sums, env_bl_ufracs = env_unique_fraction(self.branch_lengths, cur_count_array)
        # env A has 0 unique bl, B has 4, C has 1        
        self.assertEqual(env_bl_sums, [0,4,1])
        self.assertEqual(env_bl_ufracs, [0,4/17.0,1/17.0])

        cur_count_array = self.old_count_array.copy()
        bound_indices = bind_to_array(self.old_nodes, cur_count_array) 
        total_bl = sum(self.old_branch_lengths)
        bool_descendants(bound_indices)

        env_bl_sums, env_bl_ufracs = env_unique_fraction(self.old_branch_lengths, cur_count_array)
        # env A has 0 unique bl, B has 4, C has 1        
        self.assertEqual(env_bl_sums, env_bl_sums) 
        self.assertEqual(env_bl_sums, [1.29, 0.33999999999999997, 0.63])
        self.assertEqual(env_bl_ufracs, [1.29/2.9,0.33999999999999997/2.9, 0.63/2.9])

    def test_index_tree(self):
        """index_tree should produce correct index and node map"""
        #test for first tree: contains singleton outgroup
        t1 = self.t1
        id_1, child_1 = index_tree(t1)
        nodes_1 = [n._leaf_index for n in t1.traverse(self_before=False, \
            self_after=True)]
        self.assertEqual(nodes_1, [0,1,2,3,6,4,5,7,8])
        self.assertEqual(child_1, [(2,0,1),(6,2,3),(7,4,5),(8,6,7)])
        #test for second tree: strictly bifurcating
        t2 = self.t2
        id_2, child_2 = index_tree(t2)
        nodes_2 = [n._leaf_index for n in t2.traverse(self_before=False, \
            self_after=True)]
        self.assertEqual(nodes_2, [0,1,4,2,3,5,8,6,7,9,10])
        self.assertEqual(child_2, [(4,0,1),(5,2,3),(8,4,5),(9,6,7),(10,8,9)])
        #test for third tree: contains trifurcation and single-child parent
        t3 = self.t3
        id_3, child_3 = index_tree(t3)
        nodes_3 = [n._leaf_index for n in t3.traverse(self_before=False, \
            self_after=True)]
        self.assertEqual(nodes_3, [0,1,2,4,3,5,8,6,7,9,10])
        self.assertEqual(child_3, [(4,0,2),(5,3,3),(8,4,5),(9,6,7),(10,8,9)])

    def test_bind_to_array(self):
        """bind_to_array should return correct array ranges"""
        a = reshape(arange(33), (11,3))
        id_, child = index_tree(self.t3)
        bindings = bind_to_array(child, a)
        self.assertEqual(len(bindings), 5)
        self.assertEqual(bindings[0][0], a[4])
        self.assertEqual(bindings[0][1], a[0:3])
        self.assertEqual(bindings[0][1].shape, (3,3))
        self.assertEqual(bindings[1][0], a[5])
        self.assertEqual(bindings[1][1], a[3:4])
        self.assertEqual(bindings[1][1].shape, (1,3))
        self.assertEqual(bindings[2][0], a[8])
        self.assertEqual(bindings[2][1], a[4:6])
        self.assertEqual(bindings[2][1].shape, (2,3))
        self.assertEqual(bindings[3][0], a[9])
        self.assertEqual(bindings[3][1], a[6:8])
        self.assertEqual(bindings[3][1].shape, (2,3))
        self.assertEqual(bindings[4][0], a[10])
        self.assertEqual(bindings[4][1], a[8:10])
        self.assertEqual(bindings[4][1].shape, (2,3))

    def test_bind_to_parent_array(self):
        """bind_to_parent_array should bind tree to array correctly"""
        a = reshape(arange(33), (11,3))
        index_tree(self.t3)
        bindings = bind_to_parent_array(self.t3, a)
        self.assertEqual(len(bindings), 10)
        self.assertEqual(bindings[0][0], a[8])
        self.assertEqual(bindings[0][1], a[10])
        self.assertEqual(bindings[1][0], a[4])
        self.assertEqual(bindings[1][1], a[8])
        self.assertEqual(bindings[2][0], a[0])
        self.assertEqual(bindings[2][1], a[4])
        self.assertEqual(bindings[3][0], a[1])
        self.assertEqual(bindings[3][1], a[4])
        self.assertEqual(bindings[4][0], a[2])
        self.assertEqual(bindings[4][1], a[4])
        self.assertEqual(bindings[5][0], a[5])
        self.assertEqual(bindings[5][1], a[8])
        self.assertEqual(bindings[6][0], a[3])
        self.assertEqual(bindings[6][1], a[5])
        self.assertEqual(bindings[7][0], a[9])
        self.assertEqual(bindings[7][1], a[10])
        self.assertEqual(bindings[8][0], a[6])
        self.assertEqual(bindings[8][1], a[9])
        self.assertEqual(bindings[9][0], a[7])
        self.assertEqual(bindings[9][1], a[9])

    def test_delete_empty_parents(self):
        """delete_empty_parents should remove empty parents from bound indices"""
        id_to_node, node_first_last = index_tree(self.t)
        bound_indices = bind_to_array(node_first_last, self.count_array[:,0:1])
        bool_descendants(bound_indices)
        self.assertEqual(len(bound_indices), 4)
        deleted = delete_empty_parents(bound_indices)
        self.assertEqual(len(deleted), 2)
        for d in deleted:
            self.assertEqual(d[0][0], 1)

    def test_traverse_reduce(self):
        """traverse_reduce should reduce array in traversal order."""
        id_, child = index_tree(self.t3)
        a = zeros((11,3)) + 99    #fill with junk
        bindings = bind_to_array(child, a)
        #load in leaf envs
        a[0] = a[1] = a[2] = a[7] = [0,1,0]
        a[3] = [1,0,0]
        a[6] = [0,0,1]
        f = logical_or.reduce
        traverse_reduce(bindings, f)
        self.assertEqual(a,\
            array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,1,0],[1,0,0],\
            [0,0,1],[0,1,0],[1,1,0],[0,1,1],[1,1,1]])
        )
        f = sum
        traverse_reduce(bindings, f)
        self.assertEqual( a, \
            array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,3,0],[1,0,0],\
            [0,0,1],[0,1,0],[1,3,0],[0,1,1],[1,4,1]])
        )

    def test_bool_descendants(self):
        """bool_descendants should be true if any descendant true"""
        #self.t3 = DndParser('(((a,b,c),(d)),(e,f))', UniFracTreeNode)
        id_, child = index_tree(self.t3)
        a = zeros((11,3)) + 99    #fill with junk
        bindings = bind_to_array(child, a)
        #load in leaf envs
        a[0] = a[1] = a[2] = a[7] = [0,1,0]
        a[3] = [1,0,0]
        a[6] = [0,0,1]
        bool_descendants(bindings)
        self.assertEqual(a, \
            array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,1,0],[1,0,0],\
            [0,0,1],[0,1,0],[1,1,0],[0,1,1],[1,1,1]])
        )

    def test_sum_descendants(self):
        """sum_descendants should sum total descendants w/ each state"""
        id_, child = index_tree(self.t3)
        a = zeros((11,3)) + 99    #fill with junk
        bindings = bind_to_array(child, a)
        #load in leaf envs
        a[0] = a[1] = a[2] = a[7] = [0,1,0]
        a[3] = [1,0,0]
        a[6] = [0,0,1]
        sum_descendants(bindings)
        self.assertEqual(a, \
            array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,3,0],[1,0,0],\
            [0,0,1],[0,1,0],[1,3,0],[0,1,1],[1,4,1]])
        )

    def test_fitch_descendants(self):
        """fitch_descendants should assign states by fitch parsimony, ret. #"""
        id_, child = index_tree(self.t3)
        a = zeros((11,3)) + 99    #fill with junk
        bindings = bind_to_array(child, a)
        #load in leaf envs
        a[0] = a[1] = a[2] = a[7] = [0,1,0]
        a[3] = [1,0,0]
        a[6] = [0,0,1]
        changes = fitch_descendants(bindings)
        self.assertEqual(changes, 2)
        self.assertEqual(a, \
            array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,1,0],[1,0,0],\
            [0,0,1],[0,1,0],[1,1,0],[0,1,1],[0,1,0]])
        )

    def test_fitch_descendants_missing_data(self):
        """fitch_descendants should work with missing data"""
        #tree and envs for testing missing values
        t_str = '(((a:1,b:2):4,(c:3,d:1):2):1,(e:2,f:1):3);'
        env_str = """a   A
b   B
c   D
d   C
e   C
f   D"""
        t = DndParser(t_str, UniFracTreeNode)
        node_index, nodes = index_tree(t)
        env_counts = count_envs(env_str.split('\n'))
    
        count_array, unique_envs, env_to_index, node_to_index = \
            index_envs(env_counts, node_index)    

        branch_lengths = get_branch_lengths(node_index)
        #test just the AB pair
        ab_counts = count_array[:, 0:2]
        bindings = bind_to_array(nodes, ab_counts)
        changes = fitch_descendants(bindings, counter=FitchCounter)
        self.assertEqual(changes, 1)
        orig_result = ab_counts.copy()
        #check that the original Fitch counter gives the expected 
        #incorrect parsimony result
        changes = fitch_descendants(bindings, counter=FitchCounterDense)
        self.assertEqual(changes, 5)
        new_result = ab_counts.copy()
        #check that the two versions fill the array with the same values
        self.assertEqual(orig_result, new_result)

    def test_tip_distances(self):
        """tip_distances should set tips to correct distances."""
        t = self.t
        bl = self.branch_lengths.copy()[:,newaxis]
        bindings = bind_to_parent_array(t, bl)
        tips = []
        for n in t.traverse(self_before=False, self_after=True):
            if not n.Children:
                tips.append(n._leaf_index)
        tip_distances(bl, bindings, tips)
        self.assertEqual(bl, array([5,6,6,6,6,0,0,0,0])[:,newaxis])

    def test_permute_selected_rows(self):
        """permute_selected_rows should switch just the selected rows in a"""
        orig = reshape(arange(8),(4,2))
        new = orig.copy()
        fake_permutation = lambda a: range(a)[::-1] #reverse order
        permute_selected_rows([0,2], orig, new, fake_permutation)
        self.assertEqual(new,  array([[4,5],[2,3],[0,1],[6,7]]))
        #make sure we didn't change orig
        self.assertEqual(orig, reshape(arange(8), (4,2)))

    def test_prep_items_for_jackknife(self):
        """prep_items_for_jackknife should expand indices of repeated counts"""
        a = array([0,1,0,1,2,0,3])
        #          0 1 2 3 4 5 6
        result = prep_items_for_jackknife(a)
        exp = array([1,3,4,4,6,6,6])
        self.assertEqual(result, exp)

    def test_jackknife_bool(self):
        """jackknife_bool should make a vector with right number of nonzeros"""
        fake_permutation = lambda a: range(a)[::-1] #reverse order
        orig_vec = array([0,0,1,0,1,1,0,1,1])
        orig_items = flatnonzero(orig_vec)
        length = len(orig_vec)
        result = jackknife_bool(orig_items, 3, len(orig_vec), fake_permutation)
        self.assertEqual(result, array([0,0,0,0,0,1,0,1,1]))
        #returns the original if trying to take too many
        self.assertEqual(jackknife_bool(orig_items, 20, len(orig_vec)), \
            orig_vec)

    def test_jackknife_int(self):
        """jackknife_int should make a vector with right counts"""
        orig_vec = array([0,2,1,0,3,1])
        orig_items = array([1,1,2,4,4,4,5])
        #                   0 1 2 3 4 5 6
        fake_permutation = lambda a: a == 7 and array([4,6,3,1,2,6,5])
        result = jackknife_int(orig_items, 4, len(orig_vec), fake_permutation)
        self.assertEqual(result, array([0,1,0,0,2,1]))
        #returns the original if trying to take too many
        self.assertEqual(jackknife_int(orig_items, 20, len(orig_vec)), \
            orig_vec)
     
    def test_jackknife_array(self):
        """jackknife_array should make a new array with right counts"""

        orig_vec1 = array([0,2,2,3,1])
        orig_vec2 = array([2,2,1,2,2])
        test_array = array([orig_vec1, orig_vec2])

        # implement this, just doing by eye now
        #perm_fn = fake_permutation
        perm_fn = permutation

        #print "need to test with fake permutation!!"


        new_mat1 = jackknife_array(test_array, 1, axis=1, jackknife_f=jackknife_int, permutation_f=permutation)  
        self.assertEqual(new_mat1.sum(axis=0), [1,1,1,1,1])
        
        new_mat2 = jackknife_array(test_array, 2, axis=1, jackknife_f=jackknife_int, permutation_f=permutation)  
        self.assertEqual(new_mat2.sum(axis=0), [2,2,2,2,2])

        new_mat3 = jackknife_array(test_array, 2, axis=0, jackknife_f=jackknife_int, permutation_f=permutation)  
        self.assertEqual(new_mat3.sum(axis=1), [2,2])

        # test that you get orig mat back if too many
        self.assertEqual(jackknife_array(test_array, 20, axis=1), test_array)

    def test_unifrac(self):
        """unifrac should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        self.assertEqual(unifrac(bl, m[:,0], m[:,1]), 10/16.0)
        self.assertEqual(unifrac(bl, m[:,0], m[:,2]), 8/13.0)
        self.assertEqual(unifrac(bl, m[:,1], m[:,2]), 8/17.0)

    def test_unnormalized_unifrac(self):
        """unnormalized unifrac should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        self.assertEqual(unnormalized_unifrac(bl, m[:,0], m[:,1]), 10/17.)
        self.assertEqual(unnormalized_unifrac(bl, m[:,0], m[:,2]), 8/17.)
        self.assertEqual(unnormalized_unifrac(bl, m[:,1], m[:,2]), 8/17.)

    def test_PD(self):
        """PD should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        self.assertEqual(PD(bl, m[:,0]), 7)
        self.assertEqual(PD(bl, m[:,1]), 15)
        self.assertEqual(PD(bl, m[:,2]), 11)

    def test_G(self):
        """G should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        self.assertEqual(G(bl, m[:,0], m[:,0]), 0)
        self.assertEqual(G(bl, m[:,0], m[:,1]), 1/16.0)
        self.assertEqual(G(bl, m[:,1], m[:,0]), 9/16.0)

    def test_unnormalized_G(self):
        """unnormalized_G should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        self.assertEqual(unnormalized_G(bl, m[:,0], m[:,0]), 0/17.)
        self.assertEqual(unnormalized_G(bl, m[:,0], m[:,1]), 1/17.)
        self.assertEqual(unnormalized_G(bl, m[:,1], m[:,0]), 9/17.)

    def test_unifrac_matrix(self):
        """unifrac_matrix should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        result = unifrac_matrix(bl, m)
        self.assertEqual(result, array([[0, 10/16.,8/13.],[10/16.,0,8/17.],\
            [8/13.,8/17.,0]]))
        #should work if we tell it the measure is asymmetric
        result = unifrac_matrix(bl, m, is_symmetric=False)
        self.assertEqual(result, array([[0, 10/16.,8/13.],[10/16.,0,8/17.],\
            [8/13.,8/17.,0]]))
        #should work if the measure really is asymmetric
        result = unifrac_matrix(bl,m,metric=unnormalized_G,is_symmetric=False)
        self.assertEqual(result, array([[0, 1/17.,2/17.],[9/17.,0,6/17.],\
            [6/17.,2/17.,0]]))
        #should also match web site calculations
        envs = self.count_array
        bound_indices = bind_to_array(self.nodes, envs)
        bool_descendants(bound_indices)
        result = unifrac_matrix(bl, envs)
        exp = array([[0, 0.6250, 0.6154], [0.6250, 0, \
            0.4706], [0.6154, 0.4707, 0]])
        assert (abs(result - exp)).max() < 0.001

    def test_unifrac_one_sample(self):
        """unifrac_one_sample should match unifrac_matrix"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        result = unifrac_matrix(bl, m)
        
        for i in range(len(result)):
            one_sam_res = unifrac_one_sample(i, bl, m)
            self.assertEqual(result[i], one_sam_res)
            self.assertEqual(result[:,i], one_sam_res)
        
        #should work ok on asymmetric metrics
        result = unifrac_matrix(bl,m,metric=unnormalized_G,is_symmetric=False)
        
        for i in range(len(result)):
            one_sam_res = unifrac_one_sample(i, bl, m, metric=unnormalized_G)
            self.assertEqual(result[i], one_sam_res)
            # only require row for asym
            # self.assertEqual(result[:,i], one_sam_res)
        
    def test_unifrac_vector(self):
        """unifrac_vector should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        result = unifrac_vector(bl, m)
        self.assertFloatEqual(result, array([10./17,6./17,7./17]))

    def test_PD_vector(self):
        """PD_vector should return correct results for model tree"""
        m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
            [0,1,1],[1,1,1]])
        bl = self.branch_lengths
        result = PD_vector(bl, m)
        self.assertFloatEqual(result, array([7,15,11]))


    def test_weighted_unifrac_matrix(self):
        """weighted unifrac matrix should ret correct results for model tree"""
        #should match web site calculations
        envs = self.count_array
        bound_indices = bind_to_array(self.nodes, envs)
        sum_descendants(bound_indices)
        bl = self.branch_lengths
        tip_indices = [n._leaf_index for n in self.t.tips()]
        result = weighted_unifrac_matrix(bl, envs, tip_indices)
        exp = array([[0, 9.1, 4.5], [9.1, 0, \
            6.4], [4.5, 6.4, 0]])
        assert (abs(result - exp)).max() < 0.001
        #should work with branch length corrections
        td = bl.copy()[:,newaxis]
        tip_bindings = bind_to_parent_array(self.t, td)
        tips = [n._leaf_index for n in self.t.tips()]
        tip_distances(td, tip_bindings, tips)
        result = weighted_unifrac_matrix(bl, envs, tip_indices, bl_correct=True,
            tip_distances=td)
        exp = array([[0, 9.1/11.5, 4.5/(10.5+1./3)], [9.1/11.5, 0, \
            6.4/(11+1./3)], [4.5/(10.5+1./3), 6.4/(11+1./3), 0]])
        assert (abs(result - exp)).max() < 0.001
        
    def test_weighted_one_sample(self):
        """weighted one sample should match weighted matrix"""
        #should match web site calculations
        envs = self.count_array
        bound_indices = bind_to_array(self.nodes, envs)
        sum_descendants(bound_indices)
        bl = self.branch_lengths
        tip_indices = [n._leaf_index for n in self.t.tips()]
        result = weighted_unifrac_matrix(bl, envs, tip_indices)
        for i in range(len(result)):
            one_sam_res = weighted_one_sample(i, bl, envs, tip_indices)
            self.assertEqual(result[i], one_sam_res)
            self.assertEqual(result[:,i], one_sam_res)

        #should work with branch length corrections
        td = bl.copy()[:,newaxis]
        tip_bindings = bind_to_parent_array(self.t, td)
        tips = [n._leaf_index for n in self.t.tips()]
        tip_distances(td, tip_bindings, tips)
        result = weighted_unifrac_matrix(bl, envs, tip_indices, bl_correct=True,
            tip_distances=td)
        for i in range(len(result)):
            one_sam_res = weighted_one_sample(i, bl, envs, tip_indices,
                bl_correct=True, tip_distances=td)
            self.assertEqual(result[i], one_sam_res)
            self.assertEqual(result[:,i], one_sam_res)


    def test_weighted_unifrac_vector(self):
        """weighted_unifrac_vector should ret correct results for model tree"""
        envs = self.count_array
        bound_indices = bind_to_array(self.nodes, envs)
        sum_descendants(bound_indices)
        bl = self.branch_lengths
        tip_indices = [n._leaf_index for n in self.t.tips()]
        result = weighted_unifrac_vector(bl, envs, tip_indices)
        self.assertFloatEqual(result[0], sum([
            abs(1./2 - 2./8)*1,
            abs(1./2 - 1./8)*2,
            abs(0 - 1./8)*3,
            abs(0 - 3./8)*1,
            abs(0 - 1./8)*1,
            abs(0 - 4./8)*2,
            abs(2./2 - 3./8)*4,
            abs(0. - 5./8)*3.]))

        self.assertFloatEqual(result[1], sum([
            abs(0-.6)*1,
            abs(.2-.2)*2,
            abs(.2-0)*3,
            abs(.6-0)*1,
            abs(0-.2)*1,
            abs(.6-.2)*2,
            abs(.2-.8)*4,
            abs(.8-.2)*3]))

        self.assertFloatEqual(result[2], sum([
            abs(2./3-1./7)*1,
            abs(0-2./7)*2,
            abs(0-1./7)*3,
            abs(0-3./7)*1,
            abs(1./3-0)*1,
            abs(1./3-3./7)*2,
            abs(2./3-3./7)*4,
            abs(1./3-4./7)*3]))


if __name__ == '__main__':    #run if called from command-line
    main()