1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
#!/usr/bin/env python
"""Unit tests for fast tree."""
from cogent.util.unit_test import TestCase, main
from cogent.parse.tree import DndParser
from cogent.maths.unifrac.fast_tree import (count_envs, sum_env_dict,
index_envs, get_branch_lengths, index_tree, bind_to_array,
bind_to_parent_array, _is_parent_empty, delete_empty_parents,
traverse_reduce, bool_descendants, sum_descendants, fitch_descendants,
tip_distances, UniFracTreeNode, FitchCounter, FitchCounterDense,
permute_selected_rows, prep_items_for_jackknife, jackknife_bool,
jackknife_int, unifrac, unnormalized_unifrac, PD, G, unnormalized_G,
unifrac_matrix, unifrac_vector, PD_vector, weighted_unifrac,
weighted_unifrac_matrix, weighted_unifrac_vector, jackknife_array,
env_unique_fraction, unifrac_one_sample, weighted_one_sample)
from numpy import (arange, reshape, zeros, logical_or, array, sum, nonzero,
flatnonzero, newaxis)
from numpy.random import permutation
__author__ = "Rob Knight and Micah Hamady"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Micah Hamady"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight, Micah Hamady"
__email__ = "rob@spot.colorado.edu, hamady@colorado.edu"
__status__ = "Prototype"
class fast_tree_tests(TestCase):
"""Tests of top-level functions"""
def setUp(self):
"""Define a couple of standard trees"""
self.t1 = DndParser('(((a,b),c),(d,e))', UniFracTreeNode)
self.t2 = DndParser('(((a,b),(c,d)),(e,f))', UniFracTreeNode)
self.t3 = DndParser('(((a,b,c),(d)),(e,f))', UniFracTreeNode)
self.t4 = DndParser('((c)b,((f,g,h)e,i)d)', UniFracTreeNode)
self.t4.Name = 'a'
self.t_str = '((a:1,b:2):4,(c:3,(d:1,e:1):2):3)'
self.t = DndParser(self.t_str, UniFracTreeNode)
self.env_str = """
a A 1
a C 2
b A 1
b B 1
c B 1
d B 3
e C 1"""
self.env_counts = count_envs(self.env_str.splitlines())
self.node_index, self.nodes = index_tree(self.t)
self.count_array, self.unique_envs, self.env_to_index, \
self.node_to_index = index_envs(self.env_counts, self.node_index)
self.branch_lengths = get_branch_lengths(self.node_index)
self.old_t_str = '((org1:0.11,org2:0.22,(org3:0.12,org4:0.23)g:0.33)b:0.2,(org5:0.44,org6:0.55)c:0.3,org7:0.4)'
self.old_t = DndParser(self.old_t_str, UniFracTreeNode)
self.old_env_str = """
org1 env1 1
org1 env2 1
org2 env2 1
org3 env2 1
org4 env3 1
org5 env1 1
org6 env1 1
org7 env3 1
"""
self.old_env_counts = count_envs(self.old_env_str.splitlines())
self.old_node_index, self.old_nodes = index_tree(self.old_t)
self.old_count_array, self.old_unique_envs, self.old_env_to_index, \
self.old_node_to_index = index_envs(self.old_env_counts, self.old_node_index)
self.old_branch_lengths = get_branch_lengths(self.old_node_index)
def test_traverse(self):
"""traverse should work iterative or recursive"""
stti = self.t4.traverse
stt = self.t4.traverse_recursive
obs = [i.Name for i in stt(self_before=False, self_after=False)]
exp = [i.Name for i in stti(self_before=False, self_after=False)]
self.assertEqual(obs, exp)
obs = [i.Name for i in stt(self_before=True, self_after=False)]
exp = [i.Name for i in stti(self_before=True, self_after=False)]
self.assertEqual(obs, exp)
obs = [i.Name for i in stt(self_before=False, self_after=True)]
exp = [i.Name for i in stti(self_before=False, self_after=True)]
self.assertEqual(obs, exp)
obs = [i.Name for i in stt(self_before=True, self_after=True)]
exp = [i.Name for i in stti(self_before=True, self_after=True)]
self.assertEqual(obs, exp)
def test_count_envs(self):
"""count_envs should return correct counts from lines"""
envs = """
a A 3 some other junk
a B
a C 1
b A 2
skip
c B
d
b A 99
"""
result = count_envs(envs.splitlines())
self.assertEqual(result, \
{'a':{'A':3,'B':1,'C':1},'b':{'A':99},'c':{'B':1}})
def test_sum_env_dict(self):
"""sum_env_dict should return correct counts from env_dict"""
envs = """
a A 3 some other junk
a B
a C 1
b A 2
skip
c B
d
b A 99
"""
result = count_envs(envs.splitlines())
sum_ = sum_env_dict(result)
self.assertEqual(sum_, 105)
def test_index_envs(self):
"""index_envs should map envs and taxa onto indices"""
self.assertEqual(self.unique_envs, ['A','B','C'])
self.assertEqual(self.env_to_index, {'A':0, 'B':1, 'C':2})
self.assertEqual(self.node_to_index,{'a':0, 'b':1, 'c':4, 'd':2, 'e':3})
self.assertEqual(self.count_array, \
array([[1,0,2],[1,1,0],[0,3,0],[0,0,1], \
[0,1,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]]))
def test_get_branch_lengths(self):
"""get_branch_lengths should make array of branch lengths from index"""
result = get_branch_lengths(self.node_index)
self.assertEqual(result, array([1,2,1,1,3,2,4,3,0]))
def test_env_unique_fraction(self):
"""should report unique fraction of bl in each env """
# testing old unique fraction
cur_count_array = self.count_array.copy()
bound_indices = bind_to_array(self.nodes, cur_count_array)
total_bl = sum(self.branch_lengths)
bool_descendants(bound_indices)
env_bl_sums, env_bl_ufracs = env_unique_fraction(self.branch_lengths, cur_count_array)
# env A has 0 unique bl, B has 4, C has 1
self.assertEqual(env_bl_sums, [0,4,1])
self.assertEqual(env_bl_ufracs, [0,4/17.0,1/17.0])
cur_count_array = self.old_count_array.copy()
bound_indices = bind_to_array(self.old_nodes, cur_count_array)
total_bl = sum(self.old_branch_lengths)
bool_descendants(bound_indices)
env_bl_sums, env_bl_ufracs = env_unique_fraction(self.old_branch_lengths, cur_count_array)
# env A has 0 unique bl, B has 4, C has 1
self.assertEqual(env_bl_sums, env_bl_sums)
self.assertEqual(env_bl_sums, [1.29, 0.33999999999999997, 0.63])
self.assertEqual(env_bl_ufracs, [1.29/2.9,0.33999999999999997/2.9, 0.63/2.9])
def test_index_tree(self):
"""index_tree should produce correct index and node map"""
#test for first tree: contains singleton outgroup
t1 = self.t1
id_1, child_1 = index_tree(t1)
nodes_1 = [n._leaf_index for n in t1.traverse(self_before=False, \
self_after=True)]
self.assertEqual(nodes_1, [0,1,2,3,6,4,5,7,8])
self.assertEqual(child_1, [(2,0,1),(6,2,3),(7,4,5),(8,6,7)])
#test for second tree: strictly bifurcating
t2 = self.t2
id_2, child_2 = index_tree(t2)
nodes_2 = [n._leaf_index for n in t2.traverse(self_before=False, \
self_after=True)]
self.assertEqual(nodes_2, [0,1,4,2,3,5,8,6,7,9,10])
self.assertEqual(child_2, [(4,0,1),(5,2,3),(8,4,5),(9,6,7),(10,8,9)])
#test for third tree: contains trifurcation and single-child parent
t3 = self.t3
id_3, child_3 = index_tree(t3)
nodes_3 = [n._leaf_index for n in t3.traverse(self_before=False, \
self_after=True)]
self.assertEqual(nodes_3, [0,1,2,4,3,5,8,6,7,9,10])
self.assertEqual(child_3, [(4,0,2),(5,3,3),(8,4,5),(9,6,7),(10,8,9)])
def test_bind_to_array(self):
"""bind_to_array should return correct array ranges"""
a = reshape(arange(33), (11,3))
id_, child = index_tree(self.t3)
bindings = bind_to_array(child, a)
self.assertEqual(len(bindings), 5)
self.assertEqual(bindings[0][0], a[4])
self.assertEqual(bindings[0][1], a[0:3])
self.assertEqual(bindings[0][1].shape, (3,3))
self.assertEqual(bindings[1][0], a[5])
self.assertEqual(bindings[1][1], a[3:4])
self.assertEqual(bindings[1][1].shape, (1,3))
self.assertEqual(bindings[2][0], a[8])
self.assertEqual(bindings[2][1], a[4:6])
self.assertEqual(bindings[2][1].shape, (2,3))
self.assertEqual(bindings[3][0], a[9])
self.assertEqual(bindings[3][1], a[6:8])
self.assertEqual(bindings[3][1].shape, (2,3))
self.assertEqual(bindings[4][0], a[10])
self.assertEqual(bindings[4][1], a[8:10])
self.assertEqual(bindings[4][1].shape, (2,3))
def test_bind_to_parent_array(self):
"""bind_to_parent_array should bind tree to array correctly"""
a = reshape(arange(33), (11,3))
index_tree(self.t3)
bindings = bind_to_parent_array(self.t3, a)
self.assertEqual(len(bindings), 10)
self.assertEqual(bindings[0][0], a[8])
self.assertEqual(bindings[0][1], a[10])
self.assertEqual(bindings[1][0], a[4])
self.assertEqual(bindings[1][1], a[8])
self.assertEqual(bindings[2][0], a[0])
self.assertEqual(bindings[2][1], a[4])
self.assertEqual(bindings[3][0], a[1])
self.assertEqual(bindings[3][1], a[4])
self.assertEqual(bindings[4][0], a[2])
self.assertEqual(bindings[4][1], a[4])
self.assertEqual(bindings[5][0], a[5])
self.assertEqual(bindings[5][1], a[8])
self.assertEqual(bindings[6][0], a[3])
self.assertEqual(bindings[6][1], a[5])
self.assertEqual(bindings[7][0], a[9])
self.assertEqual(bindings[7][1], a[10])
self.assertEqual(bindings[8][0], a[6])
self.assertEqual(bindings[8][1], a[9])
self.assertEqual(bindings[9][0], a[7])
self.assertEqual(bindings[9][1], a[9])
def test_delete_empty_parents(self):
"""delete_empty_parents should remove empty parents from bound indices"""
id_to_node, node_first_last = index_tree(self.t)
bound_indices = bind_to_array(node_first_last, self.count_array[:,0:1])
bool_descendants(bound_indices)
self.assertEqual(len(bound_indices), 4)
deleted = delete_empty_parents(bound_indices)
self.assertEqual(len(deleted), 2)
for d in deleted:
self.assertEqual(d[0][0], 1)
def test_traverse_reduce(self):
"""traverse_reduce should reduce array in traversal order."""
id_, child = index_tree(self.t3)
a = zeros((11,3)) + 99 #fill with junk
bindings = bind_to_array(child, a)
#load in leaf envs
a[0] = a[1] = a[2] = a[7] = [0,1,0]
a[3] = [1,0,0]
a[6] = [0,0,1]
f = logical_or.reduce
traverse_reduce(bindings, f)
self.assertEqual(a,\
array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,1,0],[1,0,0],\
[0,0,1],[0,1,0],[1,1,0],[0,1,1],[1,1,1]])
)
f = sum
traverse_reduce(bindings, f)
self.assertEqual( a, \
array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,3,0],[1,0,0],\
[0,0,1],[0,1,0],[1,3,0],[0,1,1],[1,4,1]])
)
def test_bool_descendants(self):
"""bool_descendants should be true if any descendant true"""
#self.t3 = DndParser('(((a,b,c),(d)),(e,f))', UniFracTreeNode)
id_, child = index_tree(self.t3)
a = zeros((11,3)) + 99 #fill with junk
bindings = bind_to_array(child, a)
#load in leaf envs
a[0] = a[1] = a[2] = a[7] = [0,1,0]
a[3] = [1,0,0]
a[6] = [0,0,1]
bool_descendants(bindings)
self.assertEqual(a, \
array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,1,0],[1,0,0],\
[0,0,1],[0,1,0],[1,1,0],[0,1,1],[1,1,1]])
)
def test_sum_descendants(self):
"""sum_descendants should sum total descendants w/ each state"""
id_, child = index_tree(self.t3)
a = zeros((11,3)) + 99 #fill with junk
bindings = bind_to_array(child, a)
#load in leaf envs
a[0] = a[1] = a[2] = a[7] = [0,1,0]
a[3] = [1,0,0]
a[6] = [0,0,1]
sum_descendants(bindings)
self.assertEqual(a, \
array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,3,0],[1,0,0],\
[0,0,1],[0,1,0],[1,3,0],[0,1,1],[1,4,1]])
)
def test_fitch_descendants(self):
"""fitch_descendants should assign states by fitch parsimony, ret. #"""
id_, child = index_tree(self.t3)
a = zeros((11,3)) + 99 #fill with junk
bindings = bind_to_array(child, a)
#load in leaf envs
a[0] = a[1] = a[2] = a[7] = [0,1,0]
a[3] = [1,0,0]
a[6] = [0,0,1]
changes = fitch_descendants(bindings)
self.assertEqual(changes, 2)
self.assertEqual(a, \
array([[0,1,0],[0,1,0],[0,1,0],[1,0,0],[0,1,0],[1,0,0],\
[0,0,1],[0,1,0],[1,1,0],[0,1,1],[0,1,0]])
)
def test_fitch_descendants_missing_data(self):
"""fitch_descendants should work with missing data"""
#tree and envs for testing missing values
t_str = '(((a:1,b:2):4,(c:3,d:1):2):1,(e:2,f:1):3);'
env_str = """a A
b B
c D
d C
e C
f D"""
t = DndParser(t_str, UniFracTreeNode)
node_index, nodes = index_tree(t)
env_counts = count_envs(env_str.split('\n'))
count_array, unique_envs, env_to_index, node_to_index = \
index_envs(env_counts, node_index)
branch_lengths = get_branch_lengths(node_index)
#test just the AB pair
ab_counts = count_array[:, 0:2]
bindings = bind_to_array(nodes, ab_counts)
changes = fitch_descendants(bindings, counter=FitchCounter)
self.assertEqual(changes, 1)
orig_result = ab_counts.copy()
#check that the original Fitch counter gives the expected
#incorrect parsimony result
changes = fitch_descendants(bindings, counter=FitchCounterDense)
self.assertEqual(changes, 5)
new_result = ab_counts.copy()
#check that the two versions fill the array with the same values
self.assertEqual(orig_result, new_result)
def test_tip_distances(self):
"""tip_distances should set tips to correct distances."""
t = self.t
bl = self.branch_lengths.copy()[:,newaxis]
bindings = bind_to_parent_array(t, bl)
tips = []
for n in t.traverse(self_before=False, self_after=True):
if not n.Children:
tips.append(n._leaf_index)
tip_distances(bl, bindings, tips)
self.assertEqual(bl, array([5,6,6,6,6,0,0,0,0])[:,newaxis])
def test_permute_selected_rows(self):
"""permute_selected_rows should switch just the selected rows in a"""
orig = reshape(arange(8),(4,2))
new = orig.copy()
fake_permutation = lambda a: range(a)[::-1] #reverse order
permute_selected_rows([0,2], orig, new, fake_permutation)
self.assertEqual(new, array([[4,5],[2,3],[0,1],[6,7]]))
#make sure we didn't change orig
self.assertEqual(orig, reshape(arange(8), (4,2)))
def test_prep_items_for_jackknife(self):
"""prep_items_for_jackknife should expand indices of repeated counts"""
a = array([0,1,0,1,2,0,3])
# 0 1 2 3 4 5 6
result = prep_items_for_jackknife(a)
exp = array([1,3,4,4,6,6,6])
self.assertEqual(result, exp)
def test_jackknife_bool(self):
"""jackknife_bool should make a vector with right number of nonzeros"""
fake_permutation = lambda a: range(a)[::-1] #reverse order
orig_vec = array([0,0,1,0,1,1,0,1,1])
orig_items = flatnonzero(orig_vec)
length = len(orig_vec)
result = jackknife_bool(orig_items, 3, len(orig_vec), fake_permutation)
self.assertEqual(result, array([0,0,0,0,0,1,0,1,1]))
#returns the original if trying to take too many
self.assertEqual(jackknife_bool(orig_items, 20, len(orig_vec)), \
orig_vec)
def test_jackknife_int(self):
"""jackknife_int should make a vector with right counts"""
orig_vec = array([0,2,1,0,3,1])
orig_items = array([1,1,2,4,4,4,5])
# 0 1 2 3 4 5 6
fake_permutation = lambda a: a == 7 and array([4,6,3,1,2,6,5])
result = jackknife_int(orig_items, 4, len(orig_vec), fake_permutation)
self.assertEqual(result, array([0,1,0,0,2,1]))
#returns the original if trying to take too many
self.assertEqual(jackknife_int(orig_items, 20, len(orig_vec)), \
orig_vec)
def test_jackknife_array(self):
"""jackknife_array should make a new array with right counts"""
orig_vec1 = array([0,2,2,3,1])
orig_vec2 = array([2,2,1,2,2])
test_array = array([orig_vec1, orig_vec2])
# implement this, just doing by eye now
#perm_fn = fake_permutation
perm_fn = permutation
#print "need to test with fake permutation!!"
new_mat1 = jackknife_array(test_array, 1, axis=1, jackknife_f=jackknife_int, permutation_f=permutation)
self.assertEqual(new_mat1.sum(axis=0), [1,1,1,1,1])
new_mat2 = jackknife_array(test_array, 2, axis=1, jackknife_f=jackknife_int, permutation_f=permutation)
self.assertEqual(new_mat2.sum(axis=0), [2,2,2,2,2])
new_mat3 = jackknife_array(test_array, 2, axis=0, jackknife_f=jackknife_int, permutation_f=permutation)
self.assertEqual(new_mat3.sum(axis=1), [2,2])
# test that you get orig mat back if too many
self.assertEqual(jackknife_array(test_array, 20, axis=1), test_array)
def test_unifrac(self):
"""unifrac should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
self.assertEqual(unifrac(bl, m[:,0], m[:,1]), 10/16.0)
self.assertEqual(unifrac(bl, m[:,0], m[:,2]), 8/13.0)
self.assertEqual(unifrac(bl, m[:,1], m[:,2]), 8/17.0)
def test_unnormalized_unifrac(self):
"""unnormalized unifrac should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
self.assertEqual(unnormalized_unifrac(bl, m[:,0], m[:,1]), 10/17.)
self.assertEqual(unnormalized_unifrac(bl, m[:,0], m[:,2]), 8/17.)
self.assertEqual(unnormalized_unifrac(bl, m[:,1], m[:,2]), 8/17.)
def test_PD(self):
"""PD should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
self.assertEqual(PD(bl, m[:,0]), 7)
self.assertEqual(PD(bl, m[:,1]), 15)
self.assertEqual(PD(bl, m[:,2]), 11)
def test_G(self):
"""G should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
self.assertEqual(G(bl, m[:,0], m[:,0]), 0)
self.assertEqual(G(bl, m[:,0], m[:,1]), 1/16.0)
self.assertEqual(G(bl, m[:,1], m[:,0]), 9/16.0)
def test_unnormalized_G(self):
"""unnormalized_G should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
self.assertEqual(unnormalized_G(bl, m[:,0], m[:,0]), 0/17.)
self.assertEqual(unnormalized_G(bl, m[:,0], m[:,1]), 1/17.)
self.assertEqual(unnormalized_G(bl, m[:,1], m[:,0]), 9/17.)
def test_unifrac_matrix(self):
"""unifrac_matrix should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
result = unifrac_matrix(bl, m)
self.assertEqual(result, array([[0, 10/16.,8/13.],[10/16.,0,8/17.],\
[8/13.,8/17.,0]]))
#should work if we tell it the measure is asymmetric
result = unifrac_matrix(bl, m, is_symmetric=False)
self.assertEqual(result, array([[0, 10/16.,8/13.],[10/16.,0,8/17.],\
[8/13.,8/17.,0]]))
#should work if the measure really is asymmetric
result = unifrac_matrix(bl,m,metric=unnormalized_G,is_symmetric=False)
self.assertEqual(result, array([[0, 1/17.,2/17.],[9/17.,0,6/17.],\
[6/17.,2/17.,0]]))
#should also match web site calculations
envs = self.count_array
bound_indices = bind_to_array(self.nodes, envs)
bool_descendants(bound_indices)
result = unifrac_matrix(bl, envs)
exp = array([[0, 0.6250, 0.6154], [0.6250, 0, \
0.4706], [0.6154, 0.4707, 0]])
assert (abs(result - exp)).max() < 0.001
def test_unifrac_one_sample(self):
"""unifrac_one_sample should match unifrac_matrix"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
result = unifrac_matrix(bl, m)
for i in range(len(result)):
one_sam_res = unifrac_one_sample(i, bl, m)
self.assertEqual(result[i], one_sam_res)
self.assertEqual(result[:,i], one_sam_res)
#should work ok on asymmetric metrics
result = unifrac_matrix(bl,m,metric=unnormalized_G,is_symmetric=False)
for i in range(len(result)):
one_sam_res = unifrac_one_sample(i, bl, m, metric=unnormalized_G)
self.assertEqual(result[i], one_sam_res)
# only require row for asym
# self.assertEqual(result[:,i], one_sam_res)
def test_unifrac_vector(self):
"""unifrac_vector should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
result = unifrac_vector(bl, m)
self.assertFloatEqual(result, array([10./17,6./17,7./17]))
def test_PD_vector(self):
"""PD_vector should return correct results for model tree"""
m = array([[1,0,1],[1,1,0],[0,1,0],[0,0,1],[0,1,0],[0,1,1],[1,1,1],\
[0,1,1],[1,1,1]])
bl = self.branch_lengths
result = PD_vector(bl, m)
self.assertFloatEqual(result, array([7,15,11]))
def test_weighted_unifrac_matrix(self):
"""weighted unifrac matrix should ret correct results for model tree"""
#should match web site calculations
envs = self.count_array
bound_indices = bind_to_array(self.nodes, envs)
sum_descendants(bound_indices)
bl = self.branch_lengths
tip_indices = [n._leaf_index for n in self.t.tips()]
result = weighted_unifrac_matrix(bl, envs, tip_indices)
exp = array([[0, 9.1, 4.5], [9.1, 0, \
6.4], [4.5, 6.4, 0]])
assert (abs(result - exp)).max() < 0.001
#should work with branch length corrections
td = bl.copy()[:,newaxis]
tip_bindings = bind_to_parent_array(self.t, td)
tips = [n._leaf_index for n in self.t.tips()]
tip_distances(td, tip_bindings, tips)
result = weighted_unifrac_matrix(bl, envs, tip_indices, bl_correct=True,
tip_distances=td)
exp = array([[0, 9.1/11.5, 4.5/(10.5+1./3)], [9.1/11.5, 0, \
6.4/(11+1./3)], [4.5/(10.5+1./3), 6.4/(11+1./3), 0]])
assert (abs(result - exp)).max() < 0.001
def test_weighted_one_sample(self):
"""weighted one sample should match weighted matrix"""
#should match web site calculations
envs = self.count_array
bound_indices = bind_to_array(self.nodes, envs)
sum_descendants(bound_indices)
bl = self.branch_lengths
tip_indices = [n._leaf_index for n in self.t.tips()]
result = weighted_unifrac_matrix(bl, envs, tip_indices)
for i in range(len(result)):
one_sam_res = weighted_one_sample(i, bl, envs, tip_indices)
self.assertEqual(result[i], one_sam_res)
self.assertEqual(result[:,i], one_sam_res)
#should work with branch length corrections
td = bl.copy()[:,newaxis]
tip_bindings = bind_to_parent_array(self.t, td)
tips = [n._leaf_index for n in self.t.tips()]
tip_distances(td, tip_bindings, tips)
result = weighted_unifrac_matrix(bl, envs, tip_indices, bl_correct=True,
tip_distances=td)
for i in range(len(result)):
one_sam_res = weighted_one_sample(i, bl, envs, tip_indices,
bl_correct=True, tip_distances=td)
self.assertEqual(result[i], one_sam_res)
self.assertEqual(result[:,i], one_sam_res)
def test_weighted_unifrac_vector(self):
"""weighted_unifrac_vector should ret correct results for model tree"""
envs = self.count_array
bound_indices = bind_to_array(self.nodes, envs)
sum_descendants(bound_indices)
bl = self.branch_lengths
tip_indices = [n._leaf_index for n in self.t.tips()]
result = weighted_unifrac_vector(bl, envs, tip_indices)
self.assertFloatEqual(result[0], sum([
abs(1./2 - 2./8)*1,
abs(1./2 - 1./8)*2,
abs(0 - 1./8)*3,
abs(0 - 3./8)*1,
abs(0 - 1./8)*1,
abs(0 - 4./8)*2,
abs(2./2 - 3./8)*4,
abs(0. - 5./8)*3.]))
self.assertFloatEqual(result[1], sum([
abs(0-.6)*1,
abs(.2-.2)*2,
abs(.2-0)*3,
abs(.6-0)*1,
abs(0-.2)*1,
abs(.6-.2)*2,
abs(.2-.8)*4,
abs(.8-.2)*3]))
self.assertFloatEqual(result[2], sum([
abs(2./3-1./7)*1,
abs(0-2./7)*2,
abs(0-1./7)*3,
abs(0-3./7)*1,
abs(1./3-0)*1,
abs(1./3-3./7)*2,
abs(2./3-3./7)*4,
abs(1./3-4./7)*3]))
if __name__ == '__main__': #run if called from command-line
main()
|