File: test_phylo.py

package info (click to toggle)
python-cogent 1.5.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 16,424 kB
  • ctags: 24,343
  • sloc: python: 134,200; makefile: 100; ansic: 17; sh: 10
file content (280 lines) | stat: -rw-r--r-- 11,544 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#! /usr/bin/env python
import unittest, os
import warnings
from numpy import log, exp
warnings.filterwarnings('ignore', 'Not using MPI as mpi4py not found')

from cogent.phylo.distance import EstimateDistances
from cogent.phylo.nj import nj, gnj
from cogent.phylo.least_squares import wls
from cogent import LoadSeqs, LoadTree
from cogent.phylo.tree_collection import LogLikelihoodScoredTreeCollection,\
    WeightedTreeCollection, LoadTrees
from cogent.evolve.models import JC69, HKY85, F81
from cogent.phylo.consensus import majorityRule, weightedMajorityRule
from cogent.util.misc import remove_files

__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Matthew Wakefield",\
        "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

def Tree(t):
    return LoadTree(treestring=t)

class ConsensusTests(unittest.TestCase):
    def setUp(self):
        self.trees = [
                Tree("((a,b),(c,d));"),
                Tree("((a,b),(c,d));"),
                Tree("((a,c),(b,d));"),
                Tree("((a,b),c,d);")]
        
        data = zip(map(log, [0.4,0.4,0.05,0.15]), # emphasizing the a,b clade
        self.trees)
        data.sort()
        data.reverse()
        self.scored_trees = data
    
    def test_majorityRule(self):
        """Tests for majority rule consensus trees"""
        trees = self.trees
        outtrees = majorityRule(trees, strict=False)
        self.assertEqual(len(outtrees), 1)
        self.assert_(outtrees[0].sameTopology(Tree("((c,d),(a,b));")))
        outtrees = majorityRule(trees, strict=True)
        self.assertEqual(len(outtrees), 1)
        self.assert_(outtrees[0].sameTopology(Tree("(c,d,(a,b));")))
    
    def test_consensus_from_scored_trees_collection(self):
        """tree collection should get same consensus as direct approach"""
        sct = LogLikelihoodScoredTreeCollection([(1, t) for t in self.trees])
        ct = sct.getConsensusTree()
        self.assertTrue(ct.sameTopology(Tree("((c,d),(a,b));")))
    
    def test_weighted_consensus_from_scored_trees_collection(self):
        """weighted consensus from a tree collection should be different"""
        sct = LogLikelihoodScoredTreeCollection(self.scored_trees)
        ct = sct.getConsensusTree()
        self.assertTrue(ct.sameTopology(Tree("((a,b),(c,d));")))
    
    def test_weighted_trees_satisyfing_cutoff(self):
        """build consensus tree from those satisfying cutoff"""
        sct = LogLikelihoodScoredTreeCollection(self.scored_trees)
        cts = sct.getWeightedTrees(cutoff=0.8)
        expected_trees = [Tree(t) for t in "((a,b),(c,d));", "((a,b),(c,d));",
                                "((a,b),c,d);"]
        for i in range(len(cts)):
            cts[i][1].sameTopology(expected_trees[i])
        
        ct = cts.getConsensusTree()
        self.assertTrue(ct.sameTopology(Tree("((a,b),(c,d));")))
    
    def test_tree_collection_read_write_file(self):
        """should correctly read / write a collection from a file"""
        def eval_klass(coll):
            coll.writeToFile('sample.trees')
            read = LoadTrees('sample.trees')
            self.assertTrue(type(read) == type(coll))
        
        eval_klass(LogLikelihoodScoredTreeCollection(self.scored_trees))
        
        # convert lnL into p
        eval_klass(WeightedTreeCollection([(exp(s), t) 
                                    for s,t in self.scored_trees]))
        remove_files(['sample.trees'], error_on_missing=False)
    

class TreeReconstructionTests(unittest.TestCase):
    def setUp(self):
        self.tree = LoadTree(treestring='((a:3,b:4):2,(c:6,d:7):30,(e:5,f:5):5)')
        self.dists = self.tree.getDistances()
        
    def assertTreeDistancesEqual(self, t1, t2):
        d1 = t1.getDistances()
        d2 = t2.getDistances()
        self.assertEqual(len(d1), len(d2))
        for key in d2:
            self.assertAlmostEqual(d1[key], d2[key])

    def test_nj(self):
        """testing nj"""
        reconstructed = nj(self.dists)
        self.assertTreeDistancesEqual(self.tree, reconstructed)
        
    def test_gnj(self):
        """testing gnj"""
        results = gnj(self.dists, keep=1)
        (length, reconstructed) = results[0]
        self.assertTreeDistancesEqual(self.tree, reconstructed)
        
        results = gnj(self.dists, keep=10)
        (length, reconstructed) = results[0]
        self.assertTreeDistancesEqual(self.tree, reconstructed)
        
        # Results should be a TreeCollection
        len(results)
        results.getConsensusTree()

        # From GNJ paper. Pearson, Robins, Zhang 1999.
        tied_dists = {
                ('a', 'b'):3, ('a', 'c'):3, ('a', 'd'):4, ('a', 'e'):3, 
                ('b', 'c'):3, ('b', 'd'):3, ('b', 'e'):4,
                ('c', 'd'):3, ('c', 'e'):3, 
                ('d', 'e'):3}
        results = gnj(tied_dists, keep=3)
        scores = [score for (score, tree) in results]
        self.assertEqual(scores[:2], [7.75, 7.75])
        self.assertNotEqual(scores[2], 7.75)

    def test_wls(self):
        """testing wls"""
        reconstructed = wls(self.dists, a=4)
        self.assertTreeDistancesEqual(self.tree, reconstructed)

    def test_truncated_wls(self):
        """testing wls with order option"""
        order = ['e', 'b', 'c', 'd']
        reconstructed = wls(self.dists, order=order)
        self.assertEqual(set(reconstructed.getTipNames()), set(order))

    def test_limited_wls(self):
        """testing (well, exercising at least), wls with constrained start"""
        init = LoadTree(treestring='((a,c),b,d)')
        reconstructed = wls(self.dists, start=init)
        self.assertEqual(len(reconstructed.getTipNames()), 6)
        init2 = LoadTree(treestring='((a,d),b,c)')
        reconstructed = wls(self.dists, start=[init, init2])
        self.assertEqual(len(reconstructed.getTipNames()), 6)
        init3 = LoadTree(treestring='((a,d),b,z)')
        self.assertRaises(Exception, wls, self.dists, start=[init, init3])
        # if start tree has all seq names, should raise an error
        self.assertRaises(Exception, wls, self.dists,
                start=[LoadTree(treestring='((a,c),b,(d,(e,f)))')])
        
    
class DistancesTests(unittest.TestCase):
    def setUp(self):
        self.al = LoadSeqs(data = {'a':'GTACGTACGATC',
                            'b':'GTACGTACGTAC',
                            'c':'GTACGTACGTTC',
                            'e':'GTACGTACTGGT'})
        self.collection = LoadSeqs(data = {'a':'GTACGTACGATC',
                            'b':'GTACGTACGTAC',
                            'c':'GTACGTACGTTC',
                            'e':'GTACGTACTGGT'}, aligned=False)
    
    def assertDistsAlmostEqual(self, expected, observed, precision=4):
        observed = dict([(frozenset(k),v) for (k,v) in observed.items()])
        expected = dict([(frozenset(k),v) for (k,v) in expected.items()])
        for key in expected:
            self.assertAlmostEqual(expected[key], observed[key], precision)
            
    def test_EstimateDistances(self):
        """testing (well, exercising at least), EstimateDistances"""
        d = EstimateDistances(self.al, JC69())
        d.run()
        canned_result = {('b', 'e'): 0.440840,
                        ('c', 'e'): 0.440840,
                        ('a', 'c'): 0.088337,
                        ('a', 'b'): 0.188486,
                        ('a', 'e'): 0.440840,
                        ('b', 'c'): 0.0883373}
        result = d.getPairwiseDistances()
        self.assertDistsAlmostEqual(canned_result, result)
        
        # excercise writing to file
        d.writeToFile('junk.txt')
        try:
            os.remove('junk.txt')
        except OSError:
            pass # probably parallel
    
    def test_EstimateDistancesWithMotifProbs(self):
        """EstimateDistances with supplied motif probs"""
        motif_probs= {'A':0.1,'C':0.2,'G':0.2,'T':0.5}
        d = EstimateDistances(self.al, HKY85(), motif_probs=motif_probs)
        d.run()
        canned_result = {('a', 'c'): 0.07537,
                       ('b', 'c'): 0.07537,
                        ('a', 'e'): 0.39921,
                        ('a', 'b'): 0.15096,
                        ('b', 'e'): 0.39921,
                        ('c', 'e'): 0.37243}
        result = d.getPairwiseDistances()
        self.assertDistsAlmostEqual(canned_result, result)
    
    def test_EstimateDistances_fromThreeway(self):
        """testing (well, exercising at least), EsimateDistances fromThreeway"""
        d = EstimateDistances(self.al, JC69(), threeway=True)
        d.run()
        canned_result = {('b', 'e'): 0.495312,
                        ('c', 'e'): 0.479380,
                        ('a', 'c'): 0.089934,
                        ('a', 'b'): 0.190021,
                        ('a', 'e'): 0.495305,
                        ('b', 'c'): 0.0899339}
        result = d.getPairwiseDistances(summary_function="mean")
        self.assertDistsAlmostEqual(canned_result, result)
    
    def test_EstimateDistances_fromUnaligned(self):
        """Excercising estimate distances from unaligned sequences"""
        d = EstimateDistances(self.collection, JC69(), do_pair_align=True,
                                rigorous_align=True)
        d.run()
        canned_result = {('b', 'e'): 0.440840,
                        ('c', 'e'): 0.440840,
                        ('a', 'c'): 0.088337,
                        ('a', 'b'): 0.188486,
                        ('a', 'e'): 0.440840,
                        ('b', 'c'): 0.0883373}
        result = d.getPairwiseDistances()
        self.assertDistsAlmostEqual(canned_result, result)
        
        d = EstimateDistances(self.collection, JC69(), do_pair_align=True,
                                rigorous_align=False)
        d.run()
        canned_result = {('b', 'e'): 0.440840,
                        ('c', 'e'): 0.440840,
                        ('a', 'c'): 0.088337,
                        ('a', 'b'): 0.188486,
                        ('a', 'e'): 0.440840,
                        ('b', 'c'): 0.0883373}
        result = d.getPairwiseDistances()
        self.assertDistsAlmostEqual(canned_result, result)
    
    def test_EstimateDistances_other_model_params(self):
        """test getting other model params from EstimateDistances"""
        d = EstimateDistances(self.al, HKY85(), est_params=['kappa'])
        d.run()
        # this will be a Number object with Mean, Median etc ..
        kappa = d.getParamValues('kappa')
        self.assertAlmostEqual(kappa.Mean, 0.8939, 4)
        # this will be a dict with pairwise instances, it's called by the above
        # method, so the correctness of it's values is already checked
        kappa = d.getPairwiseParam('kappa')
    
    def test_EstimateDistances_modify_lf(self):
        """tests modifying the lf"""
        def constrain_fit(lf):
            lf.setParamRule('kappa', is_constant=True)
            lf.optimise(local=True)
            return lf
        
        d = EstimateDistances(self.al, HKY85(), modify_lf=constrain_fit)
        d.run()
        result = d.getPairwiseDistances()
        d = EstimateDistances(self.al, F81())
        d.run()
        expect = d.getPairwiseDistances()
        self.assertDistsAlmostEqual(expect, result)
        
    

if __name__ == '__main__':
    unittest.main()