1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
#!/usr/bin/env python
"""Unit tests for usage and substitution matrices.
"""
from cogent.util.unit_test import TestCase, main
from cogent.core.moltype import RNA
from cogent.core.usage import RnaBases, DnaBases, RnaPairs, DnaPairs
from cogent.core.alphabet import Alphabet
from cogent.core.sequence import ModelRnaSequence as RnaSequence, \
ModelRnaCodonSequence
from cogent.seqsim.usage import Usage, DnaUsage, RnaUsage, PairMatrix, Counts,\
Probs, Rates, goldman_q_dna_pair, goldman_q_rna_pair,\
goldman_q_dna_triple, goldman_q_rna_triple
from numpy import average, asarray, sqrt, identity, diagonal, trace, \
array, sum
from cogent.maths.matrix_logarithm import logm
from cogent.maths.matrix_exponentiation import FastExponentiator as expm
#need to find test directory to get access to the tests of the Freqs interface
try:
from os import getcwd
from sys import path
from os.path import sep,join
test_path = getcwd().split(sep)
index = test_path.index('tests')
fields = test_path[:index+1] + ["test_maths"]
test_path = sep + join(*fields)
path.append(test_path)
from test_stats.test_util import StaticFreqsTestsI
my_alpha = Alphabet('abcde')
class myUsage(Usage):
Alphabet = my_alpha
class UsageAsFreqsTests(StaticFreqsTestsI, TestCase):
"""Note that the remaining Usage methods are tested here."""
ClassToTest=myUsage
except ValueError: #couldn't find directory
pass
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2012, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.3"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
NUM_TESTS = 10 #for randomization trials
class UsageTests(TestCase):
"""Tests of the Usage object."""
def setUp(self):
"""Defines some standard test items."""
self.ab = Alphabet('ab')
class abUsage(Usage):
Alphabet = self.ab
self.abUsage = abUsage
def test_init(self):
"""Usage init should succeed only in subclasses"""
self.assertRaises(TypeError, Usage, [1,2,3,4])
self.assertEqual(self.abUsage().items(), [('a',0),('b',0)])
self.assertEqual(self.abUsage([5,6]).items(), [('a',5.0),('b',6.0)])
#should also construct from seq, if not same length as freqs
self.assertEqual(self.abUsage([0,0,1,1,1,0,1,1]).items(), \
[('a',3),('b',5)])
def test_getitem(self):
"""Usage getitem should get item via alphabet"""
u = self.abUsage([3,4])
self.assertEqual(u['a'], 3)
self.assertEqual(u['b'], 4)
def test_setitem(self):
"""Usage setitem should set item via alphabet"""
u = self.abUsage([3,4])
self.assertEqual(u['a'], 3)
u['a'] = 10
self.assertEqual(u['a'], 10)
u['b'] += 5
self.assertEqual(u['a'], 10)
self.assertEqual(u['b'], 9)
def test_str(self):
"""Usage str should print like equivalent list"""
u = self.abUsage()
self.assertEqual(str(u), "[('a', 0.0), ('b', 0.0)]")
u = self.abUsage([1,2.0])
self.assertEqual(str(u), \
"[('a', 1.0), ('b', 2.0)]")
def test_iter(self):
"""Usage iter should iterate over keys"""
u = self.abUsage([1,2])
x = tuple(u)
self.assertEqual(x, ('a', 'b'))
#should be able to convert to dict via iter
d = dict(u)
self.assertEqual(dict(u), {'a':1,'b':2})
def test_cmp(self):
"""Usage cmp should work as expected"""
a = self.abUsage([3,4])
b = self.abUsage([3,2])
c = self.abUsage([3,4])
self.assertEqual(a, a)
self.assertNotEqual(a,b)
self.assertEqual(a,c)
self.assertEqual(a==a, True)
self.assertEqual(a!=a, False)
self.assertEqual(a==b, False)
self.assertEqual(a!=b, True)
self.assertEqual(a==c, True)
self.assertEqual(a!=c, False)
self.assertEqual(a==3, False)
self.assertEqual(a!=3, True)
def test_add(self):
"""Usage add should add two sets of counts together"""
u, v = self.abUsage([1,2]), self.abUsage([6,4])
x = self.abUsage([7,6])
y = self.abUsage([7,6])
self.assertEqual(x, y)
self.assertEqual(x, u+v)
self.assertEqual(u + v, self.abUsage([7,6]))
def test_sub(self):
"""Usage sub should subtract one set of counts from the other"""
u, v = self.abUsage([1,2]), self.abUsage([6,4])
self.assertEqual(v-u, self.abUsage([5,2]))
def test_mul(self):
"""Usage mul should multiply usage by a scalar"""
u = self.abUsage([0,4])
self.assertEqual(u*3, self.abUsage([0,12]))
def test_div(self):
"""Usage div should divide usage by scalar (unsafely)"""
u = self.abUsage([0,4])
self.assertEqual(u/2, self.abUsage([0,2]))
self.assertEqual(u/8, self.abUsage([0.0,0.5]))
#note: don't need to divide by floating point to get fractions
self.assertEqual(u/8.0, self.abUsage([0.0,0.5]))
def test_scale_sum(self):
"""Usage scale_sum should scale usage to specified sum"""
u = self.abUsage([1,3])
self.assertEqual(u.scale_sum(12), self.abUsage([3.0, 9.0]))
self.assertEqual(u.scale_sum(1), self.abUsage([0.25,0.75]))
#default is sum to 1
self.assertEqual(u.scale_sum(), self.abUsage([0.25,0.75]))
def test_scale_max(self):
"""Usage scale_max should scale usage to specified max"""
u = self.abUsage([1,3])
self.assertEqual(u.scale_max(12), self.abUsage([4.0, 12.0]))
self.assertEqual(u.scale_max(1), self.abUsage([1/3.0,1.0]))
#default is max to 1
self.assertEqual(u.scale_max(), self.abUsage([1/3.0,1.0]))
def test_probs(self):
"""Usage probs should scale usage to sum to 1"""
u = self.abUsage([1,3])
self.assertEqual(u.probs(), self.abUsage([0.25,0.75]))
def test_randomIndices(self):
"""Usage randomIndices should return correct sequence."""
d = DnaUsage([0.25, 0.5, 0.1, 0.15])
s = d.randomIndices(7, [0, 0.49, 1, 0.74, 0.76, 0.86, 0.2])
self.assertEqual(s, array([0,1,3,1,2,3,0]))
s = d.randomIndices(10000)
u, c, a, g = [asarray(s==i, 'int32') for i in [0,1,2,3]]
assert 2300 < sum(u) < 2700
assert 4800 < sum(c) < 5200
assert 800 < sum(a) < 1200
assert 1300 < sum(g) < 1700
def test_fromSeqData(self):
"""Usage fromSeqData should construct from a sequence object w/ data"""
class o(object): pass
s = o()
s._data = array([0,0,0,1])
self.assertEqual(self.abUsage.fromSeqData(s), self.abUsage([3,1]))
def test_fromArray(self):
"""Usage fromArray should construct from array holding seq of indices"""
s = array([0,0,0,1])
self.assertEqual(self.abUsage.fromArray(s), self.abUsage([3,1]))
def test_get(self):
"""Usage get should behave like dict"""
u = self.abUsage([3,4])
self.assertEqual(u.get('a', 5), 3)
self.assertEqual(u.get('b', 5), 4)
self.assertEqual(u.get('x', 5), 5)
def test_values(self):
"""Usage values should return list of values in alphabet order"""
u = self.abUsage([3,4])
self.assertEqual(u.values(), [3,4])
def test_keys(self):
"""Usage keys should return list of symbols in alphabet order"""
u = self.abUsage([3,4])
self.assertEqual(u.keys(), ['a','b'])
def test_items(self):
"""Usage items should return list of key-value pairs"""
u = self.abUsage([3,4])
self.assertEqual(u.items(), [('a',3),('b',4)])
def test_entropy(self):
"""Usage items should calculate their Shannon entropy"""
#two equal choices implies one bit of entropy
u = RnaUsage([1,1,0,0])
self.assertEqual(u.entropy(), 1)
u = RnaUsage([10,10,0,0])
self.assertEqual(u.entropy(), 1)
#four equal choices implies two bits
u = RnaUsage([3,3,3,3])
self.assertEqual(u.entropy(), 2)
#only one choice -> no entropy
u = RnaUsage([3,0,0,0])
self.assertEqual(u.entropy(), 0)
#empty usage also has no entropy
u = RnaUsage([0,0,0,0])
self.assertEqual(u.entropy(), 0)
#calculated this one by hand
u = RnaUsage([.5,.3,.1,.1])
self.assertFloatEqual(u.entropy(),1.6854752972273346)
class PairMatrixTests(TestCase):
"""Tests of the PairMatrix base class."""
def setUp(self):
"""Define standard alphabet and matrices for tests."""
self.ab = Alphabet('ab')
self.ab_pairs = self.ab*self.ab
self.empty = PairMatrix([0,0,0,0], self.ab_pairs)
self.named = PairMatrix([[1,2],[3,4]], self.ab_pairs, 'name')
def test_init(self):
"""PairMatrix init requires data and alphabet"""
#should only care about number of elements, not shape
p = PairMatrix([1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8], RnaPairs)
assert p.Alphabet is RnaPairs
self.assertEqual(len(p._data), 4)
self.assertEqual(len(p._data.flat), 16)
self.assertEqual(p._data[0], array([1,2,3,4]))
self.assertEqual(p._data[1], array([5,6,7,8]))
def test_init_bad(self):
"""PairMatrix init should fail if data wrong length"""
self.assertRaises(ValueError, PairMatrix, [1,2,3,4], RnaPairs)
#should also require alphabet
self.assertRaises(TypeError, PairMatrix, [1,2,3,4])
def test_toMatlab(self):
"""PairMatrix toMatlab should return correct format string"""
self.assertEqual(self.empty.toMatlab(), "m=[0.0 0.0;\n0.0 0.0];\n")
self.assertEqual(self.named.toMatlab(), \
"name=[1.0 2.0;\n3.0 4.0];\n")
def test_str(self):
"""PairMatrix __str__ should return string correpsonding to data"""
self.assertEqual(str(self.named), str(self.named._data))
def test_repr(self):
"""PairMatrix __repr__ should return reconstructable string"""
self.assertEqual(repr(self.named), \
'PairMatrix('+ repr(self.named._data) + ',' +\
repr(self.ab_pairs)+",'name')")
def test_getitem(self):
"""PairMatrix __getitem__ should translate indices and get from array"""
n = self.named
self.assertEqual(n['a'], array([1,2]))
self.assertEqual(n['b'], array([3,4]))
self.assertEqual(n['a','a'], 1)
self.assertEqual(n['a','b'], 2)
self.assertEqual(n['b','a'], 3)
self.assertEqual(n['b','b'], 4)
#WARNING: m[a][b] doesn't work b/c indices not translated!
#must access as m[a,b] instead.
try:
x = n['a']['b']
except ValueError:
pass
#should work even if SubAlphabets not the same
a = Alphabet('ab')
x = Alphabet('xyz')
j = a * x
m = PairMatrix([1,2,3,4,5,6], j)
self.assertEqual(m['a','x'], 1)
self.assertEqual(m['a','y'], 2)
self.assertEqual(m['a','z'], 3)
self.assertEqual(m['b','x'], 4)
self.assertEqual(m['b','y'], 5)
self.assertEqual(m['b','z'], 6)
#should work even if SubAlphabets are different types
a = Alphabet([1,2,3])
b = Alphabet(['abc', 'xyz'])
j = a * b
m = PairMatrix([1,2,3,4,5,6], j)
self.assertEqual(m[1,'abc'], 1)
self.assertEqual(m[1,'xyz'], 2)
self.assertEqual(m[2,'abc'], 3)
self.assertEqual(m[2,'xyz'], 4)
self.assertEqual(m[3,'abc'], 5)
self.assertEqual(m[3,'xyz'], 6)
self.assertEqual(list(m[2]), [3,4])
#gives KeyError if single item not present in first level
self.assertRaises(KeyError, m.__getitem__, 'x')
def test_empty(self):
"""PairMatrix empty classmethod should produce correct class"""
p = PairMatrix.empty(self.ab_pairs)
self.assertEqual(p._data.flat, array([0,0,0,0]))
self.assertEqual(p._data, array([[0,0],[0,0]]))
self.assertEqual(p._data.shape, (2,2))
def test_eq(self):
"""Pairmatrix test for equality should check all elements"""
p = self.ab_pairs
a = PairMatrix.empty(p)
b = PairMatrix.empty(p)
assert a is not b
self.assertEqual(a, b)
c = PairMatrix([1,2,3,4], p)
d = PairMatrix([1,2,3,4], p)
assert c is not d
self.assertEqual(c, d)
self.assertNotEqual(a, c)
#Note: still compare equal if alphabets are different
x = Alphabet('xy')
x = x*x
y = PairMatrix([1,2,3,4], x)
self.assertEqual(y, c)
#should check all elements, not just first
c = PairMatrix([1,1,1,1], p)
d = PairMatrix([1,1,1,4], p)
assert c is not d
self.assertNotEqual(c, d)
def test_ne(self):
"""PairMatrix test for inequality should check all elements"""
p = self.ab_pairs
a = PairMatrix.empty(p)
b = PairMatrix.empty(p)
c = PairMatrix([1,2,3,4], p)
d = PairMatrix([1,2,3,4], p)
assert a != c
assert a == b
assert c == d
#Note: still compare equal if alphabets are different
x = Alphabet('xy')
x = x*x
y = PairMatrix([1,2,3,4], x)
assert y == c
#should check all elements, not just first
c = PairMatrix([1,1,1,1], p)
d = PairMatrix([1,1,1,4], p)
assert c != d
def test_iter(self):
"""PairMatrix __iter__ should iterate over rows."""
p = self.ab_pairs
c = PairMatrix([1,2,3,4], p)
l = list(c)
self.assertEqual(len(l), 2)
self.assertEqual(list(l[0]), [1,2])
self.assertEqual(list(l[1]), [3,4])
def test_len(self):
"""PairMatrix __len__ should return number of rows"""
p = self.ab_pairs
c = PairMatrix([1,2,3,4], p)
self.assertEqual(len(c), 2)
class CountsTests(TestCase):
"""Tests of the Counts class, including inferring counts from sequences."""
def test_toProbs(self):
"""Counts toProbs should return valid prob matrix."""
c = Counts([1,2,3,4,2,2,2,2,0.2,0.4,0.6,0.8,1,0,0,0], RnaPairs)
p = c.toProbs()
assert isinstance(p, Probs)
self.assertEqual(p, Probs([0.1,0.2,0.3,0.4,0.25,0.25,0.25,0.25, \
0.1,0.2,0.3,0.4,1.0,0.0,0.0,0.0], RnaPairs))
self.assertEqual(p['U','U'], 0.1)
self.assertEqual(p['G','U'], 1.0)
self.assertEqual(p['G','G'], 0.0)
def test_fromPair(self):
"""Counts fromPair should return correct counts."""
s = Counts.fromPair( RnaSequence('UCCGAUCGAUUAUCGGGUACGUA'), \
RnaSequence('GUCGAGUAUAGCGUACGGCUACG'),
RnaPairs)
assert isinstance(s, Counts)
vals = [
('U','U',0),('U','C',2.5),('U','A',1),('U','G',2.5),
('C','U',2.5),('C','C',1),('C','A',1),('C','G',0.5),
('A','U',1),('A','C',1),('A','A',1),('A','G',2),
('G','U',2.5),('G','C',0.5),('G','A',2),('G','G',2),
]
for i, j, val in vals:
self.assertFloatEqual(s[i,j], val)
#check that it works for big seqs
s = Counts.fromPair( RnaSequence('UCAG'*1000), \
RnaSequence('UGAG'*1000),
RnaPairs)
assert isinstance(s, Counts)
vals = [
('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
('C','U',0),('C','C',0),('C','A',0),('C','G',500),
('A','U',0),('A','C',0),('A','A',1000),('A','G',0),
('G','U',0),('G','C',500),('G','A',0),('G','G',1000),
]
for i, j, val in vals:
self.assertFloatEqual(s[i,j], val)
#check that it works for codon seqs
s1 = ModelRnaCodonSequence('UUCGCG')
s2 = ModelRnaCodonSequence('UUUGGG')
c = Counts.fromPair(s1, s2, RNA.Alphabet.Triples**2)
self.assertEqual(c._data.sum(), 2)
self.assertEqual(c._data[0,1], 0.5)
self.assertEqual(c._data[1,0], 0.5)
self.assertEqual(c._data[55,63], 0.5)
self.assertEqual(c._data[63,55], 0.5)
def test_fromTriple(self):
"""Counts fromTriple should return correct counts."""
cft = Counts.fromTriple
rs = RnaSequence
A, C, G, U = map(rs, 'ACGU')
#counts if different from both the other groups
s = cft(A, C, C, RnaPairs)
assert isinstance(s, Counts)
self.assertEqual(s['C','A'], 1)
self.assertEqual(s['A','C'], 0)
self.assertEqual(s['C','C'], 0)
#try it with longer sequences
AAA, CCC = map(rs, ['AAA', 'CCC'])
s = cft(AAA, CCC, CCC, RnaPairs)
self.assertEqual(s['C','A'], 3)
self.assertEqual(s['A','C'], 0)
#doesn't count if all three differ
ACG, CGA, GAC = map(rs, ['ACG','CGA','GAC'])
s = cft(ACG, CGA, GAC, RnaPairs)
self.assertEqual(s['C','A'], 0)
self.assertEqual(s['A','C'], 0)
self.assertEqual(s, Counts.empty(RnaPairs))
#counts as no change if same as other sequence...
s = cft(AAA, AAA, CCC, RnaPairs)
self.assertEqual(s['A','A'], 3)
self.assertEqual(s['A','C'], 0)
#...or same as the outgroup
s = cft(AAA, CCC, AAA, RnaPairs)
self.assertEqual(s['A','A'], 3)
self.assertEqual(s['A','C'], 0)
#spot-check a mixed example
s = cft( \
rs('AUCGCUAGCAUACGUCA'),
rs('AAGCUGCGUAGCGCAUA'),
rs('GCGCAUAUGACGAUAGC'),
RnaPairs
)
vals = [
('U','U',1),('U','C',0),('U','A',0),('U','G',0),
('C','U',0),('C','C',0),('C','A',0),('C','G',1),
('A','U',1),('A','C',0),('A','A',4),('A','G',0),
('G','U',0),('G','C',1),('G','A',0),('G','G',1),
]
for i, j, val in vals:
self.assertFloatEqual(s[i,j], val)
#check a long sequence
s = cft( \
rs('AUCGCUAGCAUACGUCA'*1000),
rs('AAGCUGCGUAGCGCAUA'*1000),
rs('GCGCAUAUGACGAUAGC'*1000),
RnaPairs
)
vals = [
('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
('C','U',0),('C','C',0),('C','A',0),('C','G',1000),
('A','U',1000),('A','C',0),('A','A',4000),('A','G',0),
('G','U',0),('G','C',1000),('G','A',0),('G','G',1000),
]
for i, j, val in vals:
self.assertFloatEqual(s[i,j], val)
#check that it works when forced to use both variants of fromTriple
s = cft( \
rs('AUCGCUAGCAUACGUCA'*1000),
rs('AAGCUGCGUAGCGCAUA'*1000),
rs('GCGCAUAUGACGAUAGC'*1000),
RnaPairs,
threshold=0 #forces "large" method
)
vals = [
('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
('C','U',0),('C','C',0),('C','A',0),('C','G',1000),
('A','U',1000),('A','C',0),('A','A',4000),('A','G',0),
('G','U',0),('G','C',1000),('G','A',0),('G','G',1000),
]
for i, j, val in vals:
self.assertFloatEqual(s[i,j], val)
s = cft( \
rs('AUCGCUAGCAUACGUCA'*1000),
rs('AAGCUGCGUAGCGCAUA'*1000),
rs('GCGCAUAUGACGAUAGC'*1000),
RnaPairs,
threshold=1e12 #forces "small" method
)
vals = [
('U','U',1000),('U','C',0),('U','A',0),('U','G',0),
('C','U',0),('C','C',0),('C','A',0),('C','G',1000),
('A','U',1000),('A','C',0),('A','A',4000),('A','G',0),
('G','U',0),('G','C',1000),('G','A',0),('G','G',1000),
]
for i, j, val in vals:
self.assertFloatEqual(s[i,j], val)
#check that it works for codon seqs
s1 = ModelRnaCodonSequence('UUCGCG')
s2 = ModelRnaCodonSequence('UUUGGG')
s3 = s2
c = Counts.fromTriple(s1, s2, s3, RNA.Alphabet.Triples**2)
self.assertEqual(c._data.sum(), 2)
self.assertEqual(c._data[0,1], 1)
self.assertEqual(c._data[63,55], 1)
class ProbsTests(TestCase):
"""Tests of the Probs class."""
def setUp(self):
"""Define an alphabet and some probs."""
self.ab = Alphabet('ab')
self.ab_pairs = self.ab**2
def test_isValid(self):
"""Probs isValid should return True if it's a prob matrix"""
a = self.ab_pairs
m = Probs([0.5,0.5,1,0], a)
self.assertEqual(m.isValid(), True)
#fails if don't sum to 1
m = Probs([0.5, 0, 1, 0], a)
self.assertEqual(m.isValid(), False)
#fails if negative elements
m = Probs([1, -1, 0, 1], a)
self.assertEqual(m.isValid(), False)
def test_makeModel(self):
"""Probs makeModel should return correct substitution pattern"""
a = Alphabet('abc')**2
m = Probs([0.5,0.25,0.25,0.1,0.8,0.1,0.3,0.6,0.1], a)
obs = m.makeModel(array([0,1,1,0,2,2]))
exp = array([[0.5,0.25,0.25],[0.1,0.8,0.1],[0.1,0.8,0.1],\
[0.5,0.25,0.25],[0.3,0.6,0.1],[0.3,0.6,0.1]])
self.assertEqual(obs, exp)
def test_mutate(self):
"""Probs mutate should return correct vector from input vector"""
a = Alphabet('abc')**2
m = Probs([0.5,0.25,0.25,0.1,0.8,0.1,0.3,0.6,0.1], a)
#because of fp math in accumulate, can't predict boundaries exactly
#so add/subtract eps to get the result we expect
eps = 1e-6
# a b b a c c a b c
seq = array([0,1,1,0,2,2,0,1,2])
random_vec = array([0,.01,.8-eps,1,1,.3,.05,.9+eps,.95])
self.assertEqual(m.mutate(seq, random_vec), \
# a a b c c a a c c
array([0,0,1,2,2,0,0,2,2]))
#check that freq. distribution is about right
seqs = array([m.mutate(seq) for i in range(1000)])
#WARNING: bool operators return byte arrays, whose sums wrap at 256!
zero_count = asarray(seqs == 0, 'int32')
sums = sum(zero_count, axis=0)
#expect: 500, 100, 100, 500, 300, 300, 500, 100, 300
#std dev = sqrt(npq), which is sqrt(250), sqrt(90), sqrt(210)
means = array([500, 100, 100, 500, 300, 300, 500, 100, 300])
var = array([250, 90, 90, 250, 210, 210, 250, 90, 210])
three_sd = 3 * sqrt(var)
for obs, exp, sd in zip(sums, means, three_sd):
assert exp - 2*sd < obs < exp + 2*sd
def test_toCounts(self):
"""Probs toCounts should return counts object w/ right numbers"""
a = Alphabet('abc')**2
m = Probs([0.5,0.25,0.25,0.1,0.8,0.1,0.3,0.6,0.1], a)
obs = m.toCounts(30)
assert isinstance(obs, Counts)
exp = Counts([[5.,2.5,2.5,1,8,1,3,6,1]], a)
self.assertEqual(obs, exp)
def test_toRates(self):
"""Probs toRates should return log of probs, optionally normalized"""
a = Alphabet('abc')**2
p = Probs([0.9,0.05,0.05,0.1,0.85,0.05,0.02,0.02,0.96], a)
assert p.isValid()
r = p.toRates()
assert isinstance(r, Rates)
assert r.isValid()
assert not r.isComplex()
self.assertEqual(r._data, logm(p._data))
r_norm = p.toRates(normalize=True)
self.assertFloatEqual(trace(r_norm._data), -1.0)
def test_random_p_matrix(self):
"""Probs random should return random Probsrows that sum to 1"""
for i in range(NUM_TESTS):
p = Probs.random(RnaPairs)._data
for i in p:
self.assertFloatEqual(sum(i), 1.0)
#length should be 4 by default
self.assertEqual(len(p), 4)
self.assertEqual(len(p[0]), 4)
def test_random_p_matrix_diag(self):
"""Probs random should work with a scalar diagonal"""
#if diagonal is 1, off-diagonal elements should be 0
for i in range(NUM_TESTS):
p = Probs.random(RnaPairs, 1)._data
self.assertEqual(p, identity(4, 'd'))
#if diagonal is between 0 and 1, rows should sum to 1
for i in range(NUM_TESTS):
p = Probs.random(RnaPairs, 0.5)._data
for i in range(4):
self.assertFloatEqual(sum(p[i]), 1.0)
self.assertEqual(p[i][i], 0.5)
assert min(p[i]) >= 0
assert max(p[i]) <= 1
#if diagonal > 1, rows should still sum to 1
for i in range(NUM_TESTS):
p = Probs.random(RnaPairs, 2)._data
for i in range(4):
self.assertEqual(p[i][i], 2.0)
self.assertFloatEqual(sum(p[i]), 1.0)
assert min(p[i]) < 0
def test_random_p_matrix_diag_vector(self):
"""Probs random should work with a vector diagonal"""
for i in range(NUM_TESTS):
diag = [0, 0.2, 0.6, 1.0]
p = Probs.random(RnaPairs, diag)._data
for i, d, row in zip(range(4), diag, p):
self.assertFloatEqual(sum(row), 1.0)
self.assertEqual(row[i], diag[i])
class RatesTests(TestCase):
"""Tests of the Rates class."""
def setUp(self):
"""Define standard alphabets."""
self.abc = Alphabet('abc')
self.abc_pairs = self.abc**2
def test_init(self):
"""Rates init should take additional parameter to normalize"""
r = Rates([-2,1,1,0,-1,1,0,0,0], self.abc_pairs)
self.assertEqual(r._data, array([[-2,1,1],[0,-1,1],[0,0,0]]))
r = Rates([-2.5,1,1,0,-1,1,0,0,0], self.abc_pairs)
self.assertEqual(r._data, array([[-2.5,1.,1.],[0.,-1.,1.],[0.,0.,0.]]))
r = Rates([-2,1,1,0,-1,1,2,0,-1], self.abc_pairs, normalize=True)
self.assertEqual(r._data, \
array([[-0.5,.25,.25],[0.,-.25,.25],[.5,0.,-.25]]))
def test_isComplex(self):
"""Rates isComplex should return True if complex elements"""
r = Rates([0,0,0.1j,0,0,0,0,0,0], self.abc_pairs)
assert r.isComplex()
r = Rates([0,0,0.1,0,0,0,0,0,0], self.abc_pairs)
assert not r.isComplex()
def test_isSignificantlyComplex(self):
"""Rates isSignificantlyComplex should be true if large imag component"""
r = Rates([0,0,0.2j,0,0,0,0,0,0], self.abc_pairs)
assert r.isSignificantlyComplex()
assert r.isSignificantlyComplex(0.01)
assert not r.isSignificantlyComplex(0.2)
assert not r.isSignificantlyComplex(0.3)
r = Rates([0,0,0.1,0,0,0,0,0,0], self.abc_pairs)
assert not r.isSignificantlyComplex()
assert not r.isSignificantlyComplex(1e-30)
assert not r.isSignificantlyComplex(1e3)
def test_isValid(self):
"""Rates isValid should check row sums and neg off-diags"""
r = Rates([-2,1,1,0,-1,1,0,0,0], self.abc_pairs)
assert r.isValid()
r = Rates([0,0,0,0,0,0,0,0,0], self.abc_pairs)
assert r.isValid()
#not valid if negative off-diagonal
r = Rates([-2,-1,3,1,-1,0,2,2,-4], self.abc_pairs)
assert not r.isValid()
#not valid if rows don't all sum to 0
r = Rates([0,0.0001,0,0,0,0,0,0,0], self.abc_pairs)
assert not r.isValid()
def test_normalize(self):
"""Rates normalize should return normalized copy of self where trace=-1"""
r = Rates([-2,1,1,0,-1,1,2,0,-1], self.abc_pairs)
n = r.normalize()
self.assertEqual(n._data, \
array([[-0.5,.25,.25],[0.,-.25,.25],[.5,0.,-.25]]))
#check that we didn't change the original
assert n._data is not r._data
self.assertEqual(r._data, \
array([[-2,1,1,],[0,-1,1,],[2,0,-1]]))
def test_toProbs(self):
"""Rates toProbs should return correct probability matrix"""
a = self.abc_pairs
p = Probs([0.75, 0.1, 0.15, 0.2, 0.7, 0.1, 0.05, 0.1, 0.85], a)
q = p.toRates()
self.assertEqual(q._data, logm(p._data))
p2 = q.toProbs()
self.assertFloatEqual(p2._data, p._data)
#test a case that didn't work for DNA
q = Rates(array(
[[-0.64098451, 0.0217681 , 0.35576469, 0.26345171],
[ 0.31144238, -0.90915091, 0.25825858, 0.33944995],
[ 0.01578521, 0.43162879, -0.99257581, 0.54516182],
[ 0.13229986, 0.04027147, 0.05817791, -0.23074925]]),
DnaPairs)
self.assertFloatEqual(q.toProbs(0.5)._data, expm(q._data)(t=0.5))
def test_timeForSimilarity(self):
"""Rates timeToSimilarity should return correct time"""
a = self.abc_pairs
p = Probs([0.75, 0.1, 0.15, 0.2, 0.7, 0.1, 0.05, 0.15, 0.8], a)
q = p.toRates()
d = 0.5
t = q.timeForSimilarity(d)
x = expm(q._data)(t)
self.assertFloatEqual(average(diagonal(x), axis=0), d)
t = q.timeForSimilarity(d, array([1/3.0]*3))
x = expm(q._data)(t)
self.assertFloatEqual(average(diagonal(x), axis=0), d)
self.assertEqual(q.timeForSimilarity(1), 0)
def test_toSimilarProbs(self):
"""Rates toSimilarProbs should match individual steps"""
a = self.abc_pairs
p = Probs([0.75, 0.1, 0.15, 0.2, 0.7, 0.1, 0.05, 0.15, 0.8], a)
q = p.toRates()
self.assertEqual(q.toSimilarProbs(0.5), \
q.toProbs(q.timeForSimilarity(0.5)))
#test a case that didn't work for DNA
q = Rates(array(
[[-0.64098451, 0.0217681 , 0.35576469, 0.26345171],
[ 0.31144238, -0.90915091, 0.25825858, 0.33944995],
[ 0.01578521, 0.43162879, -0.99257581, 0.54516182],
[ 0.13229986, 0.04027147, 0.05817791, -0.23074925]]),
DnaPairs)
p = q.toSimilarProbs(0.66)
self.assertFloatEqual(average(diagonal(p._data), axis=0), 0.66)
def test_random_q_matrix(self):
"""Rates random should return matrix of correct size"""
for i in range(NUM_TESTS):
q = Rates.random(RnaPairs)._data
self.assertEqual(len(q), 4)
self.assertEqual(len(q[0]), 4)
for row in q:
self.assertFloatEqual(sum(row), 0.0)
assert min(row) < 0
assert max(row) > 0
l = list(row)
l.sort()
assert min(l[1:]) >= 0
assert max(l[1:]) <= 1
def test_random_q_matrix_diag(self):
"""Rates random should set diagonal correctly from scalar"""
for i in range(NUM_TESTS):
q = Rates.random(RnaPairs, -1)._data
self.assertEqual(len(q), 4)
for i, row in enumerate(q):
self.assertFloatEqual(sum(row), 0)
self.assertEqual(row[i], -1)
assert max(row) <= 1
l = list(row)
l.sort()
assert min(l[1:]) >= 0
assert max(l[1:]) <= 1
for i in range(NUM_TESTS):
q = Rates.random(RnaPairs, -5)._data
self.assertEqual(len(q), 4)
for i, row in enumerate(q):
self.assertFloatEqual(sum(row), 0)
self.assertEqual(row[i], -5)
assert max(row) <= 5
l = list(row)
l.sort()
assert min(l[1:]) >= 0
assert max(l[1:]) <= 5
def test_random_q_matrix_diag_vector(self):
"""Rates random should init with vector as diagonal"""
diag = [1, -1, 2, -2]
for i in range(NUM_TESTS):
q = Rates.random(RnaPairs, diag)._data
for i, d, row in zip(range(4), diag, q):
self.assertFloatEqual(sum(row, axis=0), 0.0)
self.assertEqual(row[i], diag[i])
def test_fixNegsDiag(self):
"""Rates fixNegsDiag should fix negatives by adding to diagonal"""
q = Rates([[-6,2,2,2],[-6,-2,4,4],[2,2,-6,2],[4,4,-2,-6]], RnaPairs)
m = q.fixNegsDiag()._data
self.assertEqual(m,array([[-6,2,2,2],[0,-8,4,4],[2,2,-6,2],[4,4,0,-8]]))
def test_fixNegsEven(self):
"""Rates fixNegsEven should fix negatives by adding evenly to others"""
q = Rates([[-6,2,2,2],[-3,-2,3,2],[-2,-2,-6,2],[4,4,-6,-2]], RnaPairs)
m = q.fixNegsEven()._data
self.assertEqual(m,array([[-6,2,2,2],[0,-3,2,1],[0,0,-0,0],[2,2,0,-4]]))
def test_fixNegsFmin(self):
"""Rates fixNegsFmin should fix negatives using fmin method"""
q = Rates(array([[-0.28936029, 0.14543346, -0.02648614, 0.17041297],
[ 0.00949624, -0.31186005, 0.17313171, 0.1292321 ],
[ 0.10443209, 0.16134479, -0.30480186, 0.03902498],
[ 0.01611264, 0.12999161, 0.15558259, -0.30168684]]), DnaPairs)
r = q.fixNegsFmin()
assert not q.isValid()
assert r.isValid()
def test_fixNegsConstrainedOpt(self):
"""Rates fixNegsConstrainedOpt should fix negatives w/ constrained opt"""
q = Rates(array([[-0.28936029, 0.14543346, -0.02648614, 0.17041297],
[ 0.00949624, -0.31186005, 0.17313171, 0.1292321 ],
[ 0.10443209, 0.16134479, -0.30480186, 0.03902498],
[ 0.01611264, 0.12999161, 0.15558259, -0.30168684]]), DnaPairs)
r = q.fixNegsFmin()
assert not q.isValid()
assert r.isValid()
def test_fixNegsReflect(self):
"""Rates fixNegsReflect should reflect negatives across diagonal"""
ab = Alphabet('ab')**2
#should leave matrix alone if no off-diagonal elements
q = Rates([0,0,1,-1], ab)
self.assertEqual(q.fixNegsReflect()._data, array([[0,0],[1,-1]]))
q = Rates([-2,2,1,-1], ab)
self.assertEqual(q.fixNegsReflect()._data, array([[-2,2],[1,-1]]))
#should work if precisely one off-diag element in a pair is negative
q = Rates([2,-2,1,-1], ab)
self.assertEqual(q.fixNegsReflect()._data, array([[0,0],[3,-3]]))
q = Rates([-1,1,-2,2], ab)
self.assertEqual(q.fixNegsReflect()._data, array([[-3,3],[0,-0]]))
#should work if both off-diag elements in a pair are negative
q = Rates([1,-1,-2,2], ab)
self.assertEqual(q.fixNegsReflect()._data, array([[-2,2],[1,-1]]))
q = Rates([2,-2,-1,1], ab)
self.assertEqual(q.fixNegsReflect()._data, array([[-1,1],[2,-2]]))
q = Rates([[ 0, 3, -2, -1],
[ 2, -1, 2, -3],
[-1, -1, 2, 0],
[-3, 2, 0, 1]], RnaPairs)
q2 = q.fixNegsReflect()
self.assertEqual(q2._data, \
array([[-7, 3, 1, 3],
[ 2, -5, 3, 0],
[ 2, 0, -2, 0],
[ 1, 5, 0, -6]]))
class GoldmanTests(TestCase):
def setUp(self):
pass
def test_goldman_q_dna_pair(self):
"""Should return expected rate matrix"""
seq1 = "ATGCATGCATGC"
seq2 = "AAATTTGGGCCC"
expected = array([[-(2/3.0), (1/3.0), (1/3.0), 0],
[(1/3.0), -(2/3.0), 0, (1/3.0)],
[(1/3.0), 0, -(2/3.0), (1/3.0)],
[0, (1/3.0), (1/3.0), -(2/3.0)]])
observed = goldman_q_dna_pair(seq1, seq2)
self.assertFloatEqual(observed, expected)
def test_goldman_q_rna_pair(self):
"""Should return expected rate matrix"""
seq1 = "AUGCAUGCAUGC"
seq2 = "AAAUUUGGGCCC"
expected = array([[-(2/3.0), (1/3.0), (1/3.0), 0],
[(1/3.0), -(2/3.0), 0, (1/3.0)],
[(1/3.0), 0, -(2/3.0), (1/3.0)],
[0, (1/3.0), (1/3.0), -(2/3.0)]])
observed = goldman_q_rna_pair(seq1, seq2)
self.assertFloatEqual(observed, expected)
def test_goldman_q_dna_triple(self):
"""Should return expected rate matrix"""
seq1 = "ATGCATGCATGC"
seq2 = "AAATTTGGGCCC"
outgroup = "AATTGGCCAATT"
expected = array([[-(1/2.0), (1/2.0), 0, 0],
[0, 0, 0, 0],
[(1/3.0), 0, -(1/3.0), 0],
[0, 0, 0, 0]])
observed = goldman_q_dna_triple(seq1, seq2, outgroup)
self.assertFloatEqual(observed, expected)
def test_goldman_q_rna_triple(self):
"""Should return expected rate matrix"""
seq1 = "AUGCAUGCAUGC"
seq2 = "AAAUUUGGGCCC"
outgroup = "AAUUGGCCAAUU"
expected = array([[-(1/2.0), (1/2.0), 0, 0],
[0, 0, 0, 0],
[(1/3.0), 0, -(1/3.0), 0],
[0, 0, 0, 0]])
observed = goldman_q_rna_triple(seq1, seq2, outgroup)
self.assertFloatEqual(observed, expected)
if __name__ == "__main__":
main()
|