1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
|
#!/usr/bin/env python
"""Provides tests for array.py
"""
#SUPPORT2425
#from __future__ import with_statement
from cogent.util.unit_test import main, TestCase#, numpy_err
from cogent.util.array import gapped_to_ungapped, unmasked_to_masked, \
ungapped_to_gapped, masked_to_unmasked, pairs_to_array,\
ln_2, log2, safe_p_log_p, safe_log, row_uncertainty, column_uncertainty,\
row_degeneracy, column_degeneracy, hamming_distance, norm,\
euclidean_distance, \
count_simple, count_alphabet, \
is_complex, is_significantly_complex, \
has_neg_off_diags, has_neg_off_diags_naive, \
sum_neg_off_diags, sum_neg_off_diags_naive, \
scale_row_sum, scale_row_sum_naive, scale_trace, \
abs_diff, sq_diff, norm_diff, \
cartesian_product, with_diag, without_diag, \
only_nonzero, combine_dimensions, split_dimension, \
non_diag, perturb_one_off_diag, perturb_off_diag, \
merge_samples, sort_merged_samples_by_value, classifiers, \
minimize_error_count, minimize_error_rate, mutate_array
import numpy
Float = numpy.core.numerictypes.sctype2char(float)
from numpy import array, zeros, transpose, sqrt, reshape, arange, \
ravel, trace, ones
__author__ = "Rob Knight and Jeremy Widmann"
__copyright__ = "Copyright 2007-2016, The Cogent Project"
__credits__ = ["Jeremy Widmann", "Rob Knight", "Sandra Smit"]
__license__ = "GPL"
__version__ = "1.9"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class arrayTests(TestCase):
"""Tests of top-level functions."""
def setUp(self):
"""set up some standard sequences and masks"""
self.gap_state = array('-', 'c')
self.s1 = array('ACT-G', 'c')
self.s2 = array('--CT', 'c')
self.s3 = array('AC--', 'c')
self.s4 = array('AC', 'c')
self.s5 = array('--', 'c')
self.m1 = array([0,0,0,1,0])
self.m2 = array([1,1,0,0])
self.m3 = array([0,0,1,1])
self.m4 = array([0,0])
self.m5 = array([1,1])
def test_unmasked_to_masked(self):
"""unmasked_to_masked should match hand-calculated results"""
u2m = unmasked_to_masked
self.assertEqual(u2m(self.m1), array([0,1,2,4]))
self.assertEqual(u2m(self.m2), array([2,3]))
self.assertEqual(u2m(self.m3), array([0,1]))
self.assertEqual(u2m(self.m4), array([0,1]))
self.assertEqual(u2m(self.m5), array([]))
def test_ungapped_to_gapped(self):
"""ungapped_to_gapped should match hand-calculated results"""
u2g = ungapped_to_gapped
gap_state = self.gap_state
self.assertEqual(u2g(self.s1, gap_state), array([0,1,2,4]))
self.assertEqual(u2g(self.s2, gap_state), array([2,3]))
self.assertEqual(u2g(self.s3, gap_state), array([0,1]))
self.assertEqual(u2g(self.s4, gap_state), array([0,1]))
self.assertEqual(u2g(self.s5, gap_state), array([]))
def test_masked_to_unmasked(self):
"""masked_to_unmasked should match hand-calculated results"""
m2u = masked_to_unmasked
self.assertEqual(m2u(self.m1), array([0,1,2,2,3]))
self.assertEqual(m2u(self.m1, True), array([0,1,2,-1,3]))
self.assertEqual(m2u(self.m2), array([-1,-1,0,1]))
self.assertEqual(m2u(self.m2, True), array([-1,-1,0,1]))
self.assertEqual(m2u(self.m3), array([0,1,1,1]))
self.assertEqual(m2u(self.m3, True), array([0,1,-1,-1]))
self.assertEqual(m2u(self.m4), array([0,1]))
self.assertEqual(m2u(self.m4, True), array([0,1]))
self.assertEqual(m2u(self.m5), array([-1,-1]))
self.assertEqual(m2u(self.m5, True), array([-1,-1]))
def test_gapped_to_ungapped(self):
"""gapped_to_ungapped should match hand-calculated results"""
g2u = gapped_to_ungapped
gap_state = self.gap_state
self.assertEqual(g2u(self.s1, gap_state), array([0,1,2,2,3]))
self.assertEqual(g2u(self.s1, gap_state, True), array([0,1,2,-1,3]))
self.assertEqual(g2u(self.s2, gap_state), array([-1,-1,0,1]))
self.assertEqual(g2u(self.s2, gap_state, True), array([-1,-1,0,1]))
self.assertEqual(g2u(self.s3, gap_state), array([0,1,1,1]))
self.assertEqual(g2u(self.s3, gap_state, True), array([0,1,-1,-1]))
self.assertEqual(g2u(self.s4, gap_state), array([0,1]))
self.assertEqual(g2u(self.s4, gap_state, True), array([0,1]))
self.assertEqual(g2u(self.s5, gap_state), array([-1,-1]))
self.assertEqual(g2u(self.s5, gap_state, True), array([-1,-1]))
def test_pairs_to_array(self):
"""pairs_to_array should match hand-calculated results"""
p2a = pairs_to_array
p1 = [0, 1, 0.5]
p2 = [2, 3, 0.9]
p3 = [1, 2, 0.6]
pairs = [p1, p2, p3]
self.assertEqual(p2a(pairs), \
array([[0,.5,0,0],[0,0,.6,0],[0,0,0,.9],[0,0,0,0]]))
#try it without weights -- should assign 1
new_pairs = [[0,1],[2,3],[1,2]]
self.assertEqual(p2a(new_pairs), \
array([[0,1,0,0],[0,0,1,0],[0,0,0,1],[0,0,0,0]]))
#try it with explicit array size
self.assertEqual(p2a(pairs, 5), \
array([[0,.5,0,0,0],[0,0,.6,0,0],[0,0,0,.9,0],[0,0,0,0,0],\
[0,0,0,0,0]]))
#try it when we want to map the indices into gapped coords
#we're effectively doing ABCD -> -A--BC-D-
transform = array([1,4,5,7])
result = p2a(pairs, transform=transform)
self.assertEqual(result.shape, (8,8))
exp = zeros((8,8), Float)
exp[1,4] = 0.5
exp[4,5] = 0.6
exp[5,7] = 0.9
self.assertEqual(result, exp)
result = p2a(pairs, num_items=9, transform=transform)
self.assertEqual(result.shape, (9,9))
exp = zeros((9,9), Float)
exp[1,4] = 0.5
exp[4,5] = 0.6
exp[5,7] = 0.9
self.assertEqual(result, exp)
class ArrayMathTests(TestCase):
def test_ln_2(self):
"""ln_2: should be constant"""
self.assertFloatEqual(ln_2, 0.693147)
def test_log2(self):
"""log2: should work fine on positive/negative numbers and zero"""
self.assertEqual(log2(1),0)
self.assertEqual(log2(2),1)
self.assertEqual(log2(4),2)
self.assertEqual(log2(8),3)
#SUPPORT2425
#with numpy_err(divide='ignore'):
ori_err = numpy.geterr()
numpy.seterr(divide='ignore')
try:
try:
self.assertEqual(log2(0),float('-inf'))
except (ValueError, OverflowError): #platform-dependent
pass
finally:
numpy.seterr(**ori_err)
#SUPPORT2425
ori_err = numpy.geterr()
numpy.seterr(divide='raise')
try:
#with numpy_err(divide='raise'):
self.assertRaises(FloatingPointError, log2, 0)
finally:
numpy.seterr(**ori_err)
#nan is the only thing that's not equal to itself
try:
self.assertNotEqual(log2(-1),log2(-1)) #now nan
except ValueError:
pass
def test_safe_p_log_p(self):
"""safe_p_log_p: should handle pos/neg/zero/empty arrays as expected
"""
#normal valid array
a = array([[4,0,8],[2,16,4]])
self.assertEqual(safe_p_log_p(a),array([[-8,0,-24],[-2,-64,-8]]))
#just zeros
a = array([[0,0],[0,0]])
self.assertEqual(safe_p_log_p(a),array([[0,0],[0,0]]))
#negative number -- skip
self.assertEqual(safe_p_log_p(array([-4])), array([0]))
#integer input, float output
self.assertFloatEqual(safe_p_log_p(array([3])),array([-4.75488750]))
#empty array
self.assertEqual(safe_p_log_p(array([])),array([]))
def test_safe_log(self):
"""safe_log: should handle pos/neg/zero/empty arrays as expected
"""
#normal valid array
a = array([[4,0,8],[2,16,4]])
self.assertEqual(safe_log(a),array([[2,0,3],[1,4,2]]))
#input integers, output floats
self.assertFloatEqual(safe_log(array([1,2,3])),array([0,1,1.5849625]))
#just zeros
a = array([[0,0],[0,0]])
self.assertEqual(safe_log(a),array([[0,0],[0,0]]))
#negative number
try:
self.assertFloatEqual(safe_log(array([0,3,-4]))[0:2], \
array([0,1.5849625007]))
except ValueError: #platform-dependent
pass
try:
self.assertNotEqual(safe_log(array([0,3,-4]))[2],\
safe_log(array([0,3,-4]))[2])
except ValueError: #platform-dependent
pass
#empty array
self.assertEqual(safe_log(array([])),array([]))
#double empty array
self.assertEqual(safe_log(array([[]])),array([[]]))
def test_row_uncertainty(self):
"""row_uncertainty: should handle pos/neg/zero/empty arrays as expected
"""
#normal valid array
b = transpose(array([[.25,.2,.45,.25,1],[.25,.2,.45,0,0],\
[.25,.3,.05,.75,0],[.25,.3,.05,0,0]]))
self.assertFloatEqual(row_uncertainty(b),[2,1.97,1.47,0.81,0],1e-3)
#one-dimensional array
self.assertRaises(ValueError, row_uncertainty,\
array([.25,.25,.25,.25]))
#zeros
self.assertEqual(row_uncertainty(array([[0,0]])),array([0]))
#empty 2D array
self.assertEqual(row_uncertainty(array([[]])),array([0]))
self.assertEqual(row_uncertainty(array([[],[]])),array([0,0]))
#negative number -- skip
self.assertEqual(row_uncertainty(array([[-2]])), array([0]))
def test_col_uncertainty(self):
"""column_uncertainty: should handle pos/neg/zero/empty arrays
"""
b = array([[.25,.2,.45,.25,1],[.25,.2,.45,0,0],[.25,.3,.05,.75,0],\
[.25,.3,.05,0,0]])
self.assertFloatEqual(column_uncertainty(b),[2,1.97,1.47,0.81,0],1e-3)
#one-dimensional array
self.assertRaises(ValueError, column_uncertainty,\
array([.25,.25,.25,.25]))
#zeros
self.assertEqual(column_uncertainty(array([[0,0]])),array([0,0]))
#empty 2D array
self.assertEqual(column_uncertainty(array([[]])),array([]))
self.assertEqual(column_uncertainty(array([[],[]])),array([]))
#negative number -- skip
self.assertEqual(column_uncertainty(array([[-2]])), array([0]))
def test_row_degeneracy(self):
"""row_degeneracy: should work with different cutoff values and arrays
"""
a = array([[.1, .3, .4, .2],[.5, .3, 0, .2],[.8, 0, .1, .1]])
self.assertEqual(row_degeneracy(a,cutoff=.75),[3,2,1])
self.assertEqual(row_degeneracy(a,cutoff=.95),[4,3,3])
#one-dimensional array
self.assertRaises(ValueError, row_degeneracy,\
array([.25,.25,.25,.25]))
#if cutoff value is not found, results are clipped to the
#number of columns in the array
self.assertEqual(row_degeneracy(a,cutoff=2), [4,4,4])
#same behavior on empty array
self.assertEqual(row_degeneracy(array([[]])),[])
def test_column_degeneracy(self):
"""column_degeneracy: should work with different cutoff values
"""
a = array([[.1,.8,.3],[.3,.2,.3],[.6,0,.4]])
self.assertEqual(column_degeneracy(a,cutoff=.75),[2,1,3])
self.assertEqual(column_degeneracy(a,cutoff=.45),[1,1,2])
#one-dimensional array
self.assertRaises(ValueError, column_degeneracy,\
array([.25,.25,.25,.25]))
#if cutoff value is not found, results are clipped to the
#number of rows in the array
self.assertEqual(column_degeneracy(a,cutoff=2), [3,3,3])
#same behavior on empty array
self.assertEqual(column_degeneracy(array([[]])),[])
def test_hamming_distance_same_length(self):
"""hamming_distance: should return # of chars different"""
hd = hamming_distance(array('ABC','c'),array('ABB','c'))
self.assertEqual(hd,1)
self.assertEqual(hamming_distance(array('ABC', 'c'),array('ABC', 'c')),0)
self.assertEqual(hamming_distance(array('ABC', 'c'),array('DDD', 'c')),3)
def test_hamming_distance_diff_length(self):
"""hamming_distance: truncates at shortest sequence"""
self.assertEqual(hamming_distance(array('ABC', 'c'),array('ABBDDD', 'c')),1)
self.assertEqual(hamming_distance(array('ABC', 'c'),array('ABCDDD', 'c')),0)
self.assertEqual(hamming_distance(array('ABC', 'c'),array('DDDDDD', 'c')),3)
def test_norm(self):
"""norm: should return vector or matrix norm"""
self.assertFloatEqual(norm(array([2,3,4,5])),sqrt(54))
self.assertEqual(norm(array([1,1,1,1])),2)
self.assertFloatEqual(norm(array([[2,3],[4,5]])),sqrt(54))
self.assertEqual(norm(array([[1,1],[1,1]])),2)
def test_euclidean_distance(self):
"""euclidean_distance: should return dist between 2 vectors or matrices
"""
a = array([3,4])
b = array([8,5])
c = array([[2,3],[4,5]])
d = array([[1,5],[8,2]])
self.assertFloatEqual(euclidean_distance(a,b),sqrt(26))
self.assertFloatEqual(euclidean_distance(c,d),sqrt(30))
def test_euclidean_distance_unexpected(self):
"""euclidean_distance: works always when frames are aligned. UNEXPECTED!
"""
a = array([3,4])
b = array([8,5])
c = array([[2,3],[4,5]])
d = array([[1,5],[8,2]])
e = array([[4,5],[4,5],[4,5]])
f = array([1,1,1,1,1])
self.assertFloatEqual(euclidean_distance(a,c),sqrt(4))
self.assertFloatEqual(euclidean_distance(c,a),sqrt(4))
self.assertFloatEqual(euclidean_distance(a,e),sqrt(6))
#IT DOES RAISE AN ERROR WHEN THE FRAMES ARE NOT ALIGNED
self.assertRaises(ValueError,euclidean_distance,c,e)
self.assertRaises(ValueError,euclidean_distance,c,f)
def test_count_simple(self):
"""count_simple should return correct counts"""
self.assertEqual(count_simple(array([]), 3), array([0,0,0]))
self.assertEqual(count_simple(array([1,2,2,1,0]), 3), array([1,2,2]))
self.assertEqual(count_simple(array([1,1,1,1,1]), 3), array([0,5,0]))
self.assertEqual(count_simple(array([1,1,1,1,1]), 2), array([0,5]))
#raises index error if alphabet length is 0
self.assertRaises(IndexError, count_simple, array([1]), 0)
def test_count_alphabet(self):
"""count_alphabet should return correct counts"""
self.assertEqual(count_alphabet(array([]), 3), array([0,0,0]))
self.assertEqual(count_alphabet(array([1,2,2,1,0]), 3), array([1,2,2]))
self.assertEqual(count_alphabet(array([1,1,1,1,1]), 3), array([0,5,0]))
self.assertEqual(count_alphabet(array([1,1,1,1,1]), 2), array([0,5]))
#raises index error if alphabet length is 0
self.assertRaises(IndexError, count_alphabet, array([1]), 0)
def test_is_complex(self):
"""is_complex should return True on matrix with complex values"""
self.assertEqual(is_complex(array([[1,2],[3,4]])), False)
self.assertEqual(is_complex(array([[1,2],[3,4.0]])), False)
self.assertEqual(is_complex(array([[1,2+1j],[3,4]])), True)
self.assertEqual(is_complex(array([[1,2.0j],[3,4.0]])), True)
def test_is_significantly_complex(self):
"""is_significantly_complex should return True on complex matrix"""
isc = is_significantly_complex
self.assertEqual(isc(array([[1,2],[3,4]])), False)
self.assertEqual(isc(array([[1,2],[3,4.0]])), False)
self.assertEqual(isc(array([[1,2+1j],[3,4]])), True)
self.assertEqual(isc(array([[1,2.0j],[3,4.0]])), True)
self.assertEqual(isc(array([[1,1e-10j],[3,4.0]])), False)
self.assertEqual(isc(array([[1,1e-10j],[3,4.0]]), 1e-12), True)
def test_has_neg_off_diags_naive(self):
"""has_neg_off_diags_naive should return True if any off-diags negative"""
hnod = has_neg_off_diags_naive
self.assertEqual(hnod(array([[1,2],[3,4]])), False)
self.assertEqual(hnod(array([[-1,2],[3,-4]])), False)
self.assertEqual(hnod(array([[-1,-2],[3,-4]])), True)
self.assertEqual(hnod(array([[1,-2],[3,4]])), True)
def test_has_neg_off_diags(self):
"""has_neg_off_diags should be same as has_neg_off_diags_naive"""
hnod = has_neg_off_diags
self.assertEqual(hnod(array([[1,2],[3,4]])), False)
self.assertEqual(hnod(array([[-1,2],[3,-4]])), False)
self.assertEqual(hnod(array([[-1,-2],[3,-4]])), True)
self.assertEqual(hnod(array([[1,-2],[3,4]])), True)
def test_sum_neg_off_diags_naive(self):
"""sum_neg_off_diags_naive should return the sum of negative off-diags"""
snod = sum_neg_off_diags_naive
self.assertEqual(snod(array([[1,2],[3,4]])), 0)
self.assertEqual(snod(array([[-1,2],[3,-4]])), 0)
self.assertEqual(snod(array([[-1,-2],[3,-4]])), -2)
self.assertEqual(snod(array([[1,-2],[3,4]])), -2)
self.assertEqual(snod(array([[1,-2],[-3,4]])), -5)
def test_sum_neg_off_diags(self):
"""sum_neg_off_diags should return same as sum_neg_off_diags_naive"""
snod = sum_neg_off_diags
self.assertEqual(snod(array([[1,2],[3,4]])), 0)
self.assertEqual(snod(array([[-1,2],[3,-4]])), 0)
self.assertEqual(snod(array([[-1,-2],[3,-4]])), -2)
self.assertEqual(snod(array([[1,-2],[3,4]])), -2)
self.assertEqual(snod(array([[1,-2],[-3,4]])), -5)
def test_scale_row_sum(self):
"""scale_row_sum should give same result as scale_row_sum_naive"""
m = array([[1.0,2,3,4],[2,4,4,0],[1,1,1,1],[0,0,0,100]])
scale_row_sum(m)
self.assertFloatEqual(m, [[0.1,0.2,0.3,0.4],[0.2,0.4,0.4,0],\
[0.25,0.25,0.25,0.25],[0,0,0,1.0]])
scale_row_sum(m,4)
self.assertFloatEqual(m, [[0.4,0.8,1.2,1.6],[0.8,1.6,1.6,0],\
[1,1,1,1],[0,0,0,4.0]])
#if any of the rows sums to zero, an exception will be raised.
#SUPPORT2425
ori_err = numpy.geterr()
numpy.seterr(divide='raise')
try:
#with numpy_err(divide='raise'):
self.assertRaises((ZeroDivisionError, FloatingPointError), \
scale_row_sum, array([[1,0],[0,0]]))
finally:
numpy.seterr(**ori_err)
def test_scale_row_sum_naive(self):
"""scale_row_sum_naive should scale rows to correct values"""
m = array([[1.0,2,3,4],[2,4,4,0],[1,1,1,1],[0,0,0,100]])
scale_row_sum_naive(m)
self.assertFloatEqual(m, [[0.1,0.2,0.3,0.4],[0.2,0.4,0.4,0],\
[0.25,0.25,0.25,0.25],[0,0,0,1.0]])
scale_row_sum_naive(m,4)
self.assertFloatEqual(m, [[0.4,0.8,1.2,1.6],[0.8,1.6,1.6,0],\
[1,1,1,1],[0,0,0,4.0]])
#if any of the rows sums to zero, an exception will be raised.
#SUPPORT2425
ori_err = numpy.geterr()
numpy.seterr(divide='raise')
try:
#with numpy_err(divide='raise'):
self.assertRaises((ZeroDivisionError, FloatingPointError), \
scale_row_sum_naive, array([[1,0],[0,0]]))
finally:
numpy.seterr(**ori_err)
def test_scale_trace(self):
"""scale_trace should scale trace to correct values"""
#should scale to -1 by default
#WARNING: won't work with integer matrices
m = array([[-2., 0],[0,-2]])
scale_trace(m)
self.assertFloatEqual(m, [[-0.5, 0],[0,-0.5]])
#should work even with zero rows
m = array([
[1.0,2,3,4],
[2,4,4,0],
[1,1,0,1],
[0,0,0,0]
])
m_orig = m.copy()
scale_trace(m)
self.assertFloatEqual(m, m_orig / -5)
#but should fail if trace is zero
m = array([[0,1,1],[1,0,1],[1,1,0]])
#SUPPORT2425
ori_err = numpy.geterr()
numpy.seterr(divide='raise')
try:
#with numpy_err(divide='raise'):
self.assertRaises((ZeroDivisionError, FloatingPointError), \
scale_trace, m)
finally:
numpy.seterr(**ori_err)
def test_abs_diff(self):
"""abs_diff should calculate element-wise sum of abs(first-second)"""
m = array([[1.0,2,3],[4,5,6], [7,8,9]])
m2 = array([[1.0,1,4],[2,6,-1],[8,6,-5]])
#matrix should not be different from itself
self.assertEqual(abs_diff(m,m), 0.0)
self.assertEqual(abs_diff(m2,m2), 0.0)
#difference should be same either direction
self.assertEqual(abs_diff(m,m2), 29.0)
self.assertEqual(abs_diff(m2,m), 29.0)
def test_sq_diff(self):
"""sq_diff should calculate element-wise sum square of abs(first-second)"""
m = array([[1.0,2,3],[4,5,6], [7,8,9]])
m2 = array([[1.0,1,4],[2,6,-1],[8,6,-5]])
#matrix should not be different from itself
self.assertEqual(sq_diff(m,m), 0.0)
self.assertEqual(sq_diff(m2,m2), 0.0)
#difference should be same either direction
self.assertEqual(sq_diff(m,m2), 257.0)
self.assertEqual(sq_diff(m2,m), 257.0)
def test_norm_diff(self):
"""norm_diff should calculate per-element rms difference"""
m = array([[1.0,2,3],[4,5,6], [7,8,9]])
m2 = array([[1.0,1,4],[2,6,-1],[8,6,-5]])
#matrix should not be different from itself
self.assertEqual(norm_diff(m,m), 0.0)
self.assertEqual(norm_diff(m2,m2), 0.0)
#difference should be same either direction
self.assertEqual(norm_diff(m,m2), sqrt(257.0)/9)
self.assertEqual(norm_diff(m2,m), sqrt(257.0)/9)
def test_carteisan_product(self):
"""cartesian_product should return expected results."""
a = 'abc'
b = [1,2,3]
c = [1.0]
d = [0,1]
#cartesian_product of list of single list should be same list
self.assertEqual(cartesian_product([c]), [(1.0,)])
self.assertEqual(cartesian_product([a]), [('a',),('b',),('c',)])
#should combine two lists correctly
self.assertEqual(cartesian_product([a,b]), \
[('a',1),('a',2),('a',3),('b',1),('b',2),\
('b',3),('c',1),('c',2),('c',3)])
#should combine three lists correctly
self.assertEqual(cartesian_product([d,d,d]), \
[(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)])
self.assertEqual(cartesian_product([c,d,d]), \
[(1.0,0,0),(1.0,0,1),(1.0,1,0),(1.0,1,1)])
def test_without_diag(self):
"""without_diag should omit diagonal from matrix"""
a = array([[1,2,3],[4,5,6],[7,8,9]])
b = without_diag(a)
self.assertEqual(b, array([[2,3],[4,6],[7,8]]))
def test_with_diag(self):
"""with_diag should add diagonal to matrix"""
a = array([[2,3],[4,6],[7,8]])
b = with_diag(a, array([1,5,9]))
self.assertEqual(b, array([[1,2,3],[4,5,6],[7,8,9]]))
def test_only_nonzero(self):
"""only_nonzero should return only items whose first element is nonzero"""
a = reshape(arange(1,46),(5,3,3))
a[1,0,0] = 0
a[3,0,0] = 0
#expect result to be rows 0, 2 and 3 of a
result = only_nonzero(a)
self.assertEqual(result,
array([[[1,2,3],[4,5,6],[7,8,9]],\
[[19,20,21],[22,23,24],[25,26,27]],
[[37,38,39],[40,41,42],[43,44,45]]]))
def test_combine_dimensions(self):
"""combine_dimensions should aggregate expected dimensions"""
m = reshape(arange(81), (3,3,3,3))
a = combine_dimensions(m, 0)
self.assertEqual(a.shape, (3,3,3,3))
a = combine_dimensions(m, 1)
self.assertEqual(a.shape, (3,3,3,3))
a = combine_dimensions(m, 2)
self.assertEqual(a.shape, (9,3,3))
a = combine_dimensions(m, 3)
self.assertEqual(a.shape, (27,3))
a = combine_dimensions(m, 4)
self.assertEqual(a.shape, (81,))
#should work for negative indices as well, starting at end
a = combine_dimensions(m, -1)
self.assertEqual(a.shape, (3,3,3,3))
a = combine_dimensions(m, -2)
self.assertEqual(a.shape, (3,3,9))
a = combine_dimensions(m, -3)
self.assertEqual(a.shape, (3,27))
a = combine_dimensions(m, -4)
self.assertEqual(a.shape, (81,))
def test_split_dimension(self):
"""split_dimension should unpack specified dimension"""
m = reshape(arange(12**3), (12,12,12))
a = split_dimension(m, 0, (4,3))
self.assertEqual(a.shape, (4,3,12,12))
a = split_dimension(m, 0, (2,3,2))
self.assertEqual(a.shape, (2,3,2,12,12))
a = split_dimension(m, 1, (6,2))
self.assertEqual(a.shape, (12, 6, 2, 12))
a = split_dimension(m, 2, (3,4))
self.assertEqual(a.shape, (12,12,3,4))
#should work for negative index
a = split_dimension(m, -1, (3,4))
self.assertEqual(a.shape, (12,12,3,4))
a = split_dimension(m, -2, (3,4))
self.assertEqual(a.shape, (12,3,4,12))
a = split_dimension(m, -3, (3,4))
self.assertEqual(a.shape, (3,4,12,12))
#should fail with IndexError for invalid dimension
self.assertRaises(IndexError, split_dimension, m, 5, (3,4))
def test_non_diag(self):
"""non_diag should return non-diag elements from flattened matrices"""
a = reshape(arange(16), (4,4))
m = non_diag(a)
self.assertEqual(m, array([[1,2],[5,6],[9,10],[13,14]]))
a = reshape(arange(27), (3,9))
m = non_diag(a)
self.assertEqual(m, array([[1,2,3,5,6,7],[10,11,12,14,15,16],\
[19,20,21,23,24,25]]))
def test_perturb_one_off_diag(self):
"""perturb_element should perturb a random off-diagonal element"""
for i in range(100):
a = zeros((4,4), Float)
p = perturb_one_off_diag(a)
#NOTE: off-diag element and diag element will _both_ change
self.assertEqual(sum(ravel(p != a)), 2)
#check that sum is still 0
self.assertEqual(sum(ravel(p)), 0)
#check that rrace is negative
assert trace(p) < 1
#check that we can pick an element to change
a = zeros((4,4), Float)
p = perturb_one_off_diag(a, mean=5, sd=0.1, element_to_change=8)
#check that row still sums to 0
self.assertEqual(sum(ravel(p)), 0)
#set diag in changed row to 0
p[2][2] = 0
assert ((4.5 < sum(p)).any() < 5.5).any()
assert 4.5 < p[2][3] < 5.5
p[2][3] = 0
self.assertEqual(sum(ravel(p)), 0)
def test_perturb_off_diag(self):
"""perturb_off_diag should change all off_diag elements."""
a = zeros((4,4), Float)
d = perturb_off_diag(a)
self.assertFloatEqual(sum(ravel(d)), 0)
#try it with a valid rate matrix
a = ones((4,4), Float)
for i in range(4):
a[i][i] = -3
d = perturb_off_diag(a)
self.assertNotEqual(d, a)
self.assertFloatEqual(sum(ravel(d)), 0)
#check that we didn't change it too much
assert -13 < trace(d) < -11
def test_merge_samples(self):
"""merge_samples should keep the sample label"""
self.assertEqual(merge_samples(array([1,2]),array([3,4]),array([5])),
array([[1,2,3,4,5],[0,0,1,1,2]]))
def test_sort_merged_samples_by_value(self):
"""sort_merged_samples_by_value should keep label associations"""
s = merge_samples(array([3,4]), array([5,6]), array([1,2]))
result = sort_merged_samples_by_value(s)
self.assertEqual(result, array([[1,2,3,4,5,6],[2,2,0,0,1,1]]))
def test_classifiers(self):
"""classifiers should return all the 1D classifiers of samples"""
first = array([2,1,5,3,5])
second = array([2,5,5,4,6,7])
result = classifiers(first, second)
self.assertEqual(len(result), 6)
exp = [(1,False,0,4,1,6),(3,False,1,3,2,5),(4,False,1,2,3,5),\
(5,False,2,2,3,4),(9,False,4,0,5,2),(10,False,5,0,5,1)]
self.assertEqual(result, exp)
#should work in reverse
result = classifiers(second, first)
exp = [(1,True,0,4,1,6),(3,True,1,3,2,5),(4,True,1,2,3,5),\
(5,True,2,2,3,4),(9,True,4,0,5,2),(10,True,5,0,5,1)]
def test_minimize_error_count(self):
"""minimize_error_count should return correct classifier"""
first = array([2,1,5,3,5])
second = array([2,5,5,4,6,7])
c = classifiers(first, second)
exp = (4,False,1,2,3,5)
self.assertEqual(minimize_error_count(c), exp)
def test_minimize_error_rate(self):
"""minimize_error_rate should return correct classifier"""
#should be same as error count on example used above
first = array([2,1,5,3,5])
second = array([2,5,5,4,6,7])
c = classifiers(first, second)
exp = (4,False,1,2,3,5)
self.assertEqual(minimize_error_rate(c), exp)
#here's a case where they should differ
first = array([2,3,11,5])
second = array([1,4,6,7,8,9,10])
c = classifiers(first, second)
self.assertEqual(minimize_error_count(c), (3,False,1,2,2,6))
self.assertEqual(minimize_error_rate(c), (5,False,2,1,3,5))
def test_mutate_array(self):
"""mutate_array should return mutated copy"""
a = arange(5)
m = mutate_array(a, 1, 2)
assert a is not m
self.assertNotEqual(a, m)
residuals = m - a
assert min(residuals) > -6
assert max(residuals) < 6
if __name__ == '__main__':
main()
|