1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
#!/usr/bin/env python
import warnings
warnings.filterwarnings('ignore', 'Not using MPI as mpi4py not found')
import numpy
# hides the warning from taking log of -ve determinant
numpy.seterr(invalid='ignore')
from cogent.util.unit_test import TestCase, main
from cogent import LoadSeqs, DNA, RNA, PROTEIN
from cogent.evolve.pairwise_distance import get_moltype_index_array, \
seq_to_indices, _fill_diversity_matrix, \
_jc69_from_matrix, JC69Pair, _tn93_from_matrix, TN93Pair, LogDetPair, \
ParalinearPair
from cogent.evolve._pairwise_distance import \
_fill_diversity_matrix as pyx_fill_diversity_matrix
__author__ = "Gavin Huttley, Yicheng Zhu and Ben Kaehler"
__copyright__ = "Copyright 2007-2016, The Cogent Project"
__credits__ = ["Gavin Huttley", "Yicheng Zhu", "Ben Kaehler"]
__license__ = "GPL"
__version__ = "1.9"
__maintainer__ = "Gavin Huttley"
__email__ = "Gavin.Huttley@anu.edu.au"
__status__ = "Production"
class TestPair(TestCase):
dna_char_indices = get_moltype_index_array(DNA)
rna_char_indices = get_moltype_index_array(RNA)
alignment = LoadSeqs(data=[('s1', 'ACGTACGTAC'),
('s2', 'GTGTACGTAC')], moltype=DNA)
ambig_alignment = LoadSeqs(data=[('s1', 'RACGTACGTACN'),
('s2', 'AGTGTACGTACA')], moltype=DNA)
diff_alignment = LoadSeqs(data=[('s1', 'ACGTACGTTT'),
('s2', 'GTGTACGTAC')], moltype=DNA)
def test_char_to_index(self):
"""should correctly recode a DNA & RNA seqs into indices"""
seq = 'TCAGRNY?-'
expected = [0, 1, 2, 3, -9, -9, -9, -9, -9]
indices = seq_to_indices(seq, self.dna_char_indices)
self.assertEquals(indices, expected)
seq = 'UCAGRNY?-'
indices = seq_to_indices(seq, self.rna_char_indices)
self.assertEquals(indices, expected)
def test_fill_diversity_matrix_all(self):
"""make correct diversity matrix when all chars valid"""
s1 = seq_to_indices('ACGTACGTAC', self.dna_char_indices)
s2 = seq_to_indices('GTGTACGTAC', self.dna_char_indices)
matrix = numpy.zeros((4,4), float)
# self-self should just be an identity matrix
_fill_diversity_matrix(matrix, s1, s1)
self.assertEquals(matrix.sum(), len(s1))
self.assertEquals(matrix,
numpy.array([[2,0,0,0],
[0,3,0,0],
[0,0,3,0],
[0,0,0,2]], float))
# small diffs
matrix.fill(0)
_fill_diversity_matrix(matrix, s1, s2)
self.assertEquals(matrix,
numpy.array([[2,0,0,0],
[1,2,0,0],
[0,0,2,1],
[0,0,0,2]], float))
def test_fill_diversity_matrix_some(self):
"""make correct diversity matrix when not all chars valid"""
s1 = seq_to_indices('RACGTACGTACN', self.dna_char_indices)
s2 = seq_to_indices('AGTGTACGTACA', self.dna_char_indices)
matrix = numpy.zeros((4,4), float)
# small diffs
matrix.fill(0)
_fill_diversity_matrix(matrix, s1, s2)
self.assertEquals(matrix,
numpy.array([[2,0,0,0],
[1,2,0,0],
[0,0,2,1],
[0,0,0,2]], float))
def test_python_vs_cython_fill_matrix(self):
"""python & cython fill_diversity_matrix give same answer"""
s1 = seq_to_indices('RACGTACGTACN', self.dna_char_indices)
s2 = seq_to_indices('AGTGTACGTACA', self.dna_char_indices)
matrix1 = numpy.zeros((4,4), float)
_fill_diversity_matrix(matrix1, s1, s2)
matrix2 = numpy.zeros((4,4), float)
pyx_fill_diversity_matrix(matrix2, s1, s2)
self.assertFloatEqual(matrix1, matrix2)
def test_jc69_from_matrix(self):
"""compute JC69 from diversity matrix"""
s1 = seq_to_indices('ACGTACGTAC', self.dna_char_indices)
s2 = seq_to_indices('GTGTACGTAC', self.dna_char_indices)
matrix = numpy.zeros((4,4), float)
_fill_diversity_matrix(matrix, s1, s2)
total, p, dist, var = _jc69_from_matrix(matrix)
self.assertEquals(total, 10.0)
self.assertEquals(p, 0.2)
def test_jc69_from_alignment(self):
"""compute JC69 dists from an alignment"""
calc = JC69Pair(DNA, alignment=self.alignment)
calc.run(show_progress=False)
self.assertEquals(calc.Lengths['s1', 's2'], 10)
self.assertEquals(calc.Proportions['s1', 's2'], 0.2)
# value from OSX MEGA 5
self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2326161962)
# value**2 from OSX MEGA 5
self.assertFloatEqual(calc.Variances['s1', 's2'],
0.029752066125078681)
# value from OSX MEGA 5
self.assertFloatEqual(calc.StdErr['s1', 's2'], 0.1724878724)
# same answer when using ambiguous alignment
calc.run(self.ambig_alignment, show_progress=False)
self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2326161962)
# but different answer if subsequent alignment is different
calc.run(self.diff_alignment, show_progress=False)
self.assertTrue(calc.Dists['s1', 's2'] != 0.2326161962)
def test_tn93_from_matrix(self):
"""compute TN93 distances"""
calc = TN93Pair(DNA, alignment=self.alignment)
calc.run(show_progress=False)
self.assertEquals(calc.Lengths['s1', 's2'], 10)
self.assertEquals(calc.Proportions['s1', 's2'], 0.2)
# value from OSX MEGA 5
self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2554128119)
# value**2 from OSX MEGA 5
self.assertFloatEqual(calc.Variances['s1', 's2'], 0.04444444445376601)
# value from OSX MEGA 5
self.assertFloatEqual(calc.StdErr['s1', 's2'], 0.2108185107)
# same answer when using ambiguous alignment
calc.run(self.ambig_alignment, show_progress=False)
self.assertFloatEqual(calc.Dists['s1', 's2'], 0.2554128119)
# but different answer if subsequent alignment is different
calc.run(self.diff_alignment, show_progress=False)
self.assertTrue(calc.Dists['s1', 's2'] != 0.2554128119)
def test_distance_pair(self):
"""get distances dict"""
calc = TN93Pair(DNA, alignment=self.alignment)
calc.run(show_progress=False)
dists = calc.getPairwiseDistances()
dist = 0.2554128119
expect = {('s1', 's2'): dist, ('s2', 's1'): dist}
self.assertEquals(dists.keys(), expect.keys())
self.assertFloatEqual(dists.values(), expect.values())
def test_logdet_pair_dna(self):
"""logdet should produce distances that match MEGA"""
aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
logdet_calc.run(use_tk_adjustment=True, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
all_expected = {('Human', 'NineBande'): 0.075336929999999996,
('NineBande', 'DogFaced'): 0.0898575452,
('DogFaced', 'Human'): 0.1061747919,
('HowlerMon', 'DogFaced'): 0.0934480008,
('Mouse', 'HowlerMon'): 0.26422862920000001,
('NineBande', 'Human'): 0.075336929999999996,
('HowlerMon', 'NineBande'): 0.062202897899999998,
('DogFaced', 'NineBande'): 0.0898575452,
('DogFaced', 'HowlerMon'): 0.0934480008,
('Human', 'DogFaced'): 0.1061747919,
('Mouse', 'Human'): 0.26539976700000001,
('NineBande', 'HowlerMon'): 0.062202897899999998,
('HowlerMon', 'Human'): 0.036571181899999999,
('DogFaced', 'Mouse'): 0.2652555144,
('HowlerMon', 'Mouse'): 0.26422862920000001,
('Mouse', 'DogFaced'): 0.2652555144,
('NineBande', 'Mouse'): 0.22754789210000001,
('Mouse', 'NineBande'): 0.22754789210000001,
('Human', 'Mouse'): 0.26539976700000001,
('Human', 'HowlerMon'): 0.036571181899999999}
for pair in dists:
got = dists[pair]
expected = all_expected[pair]
self.assertFloatEqual(got, expected)
def test_logdet_tk_adjustment(self):
"""logdet using tamura kumar differs from classic"""
aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
logdet_calc.run(use_tk_adjustment=True, show_progress=False)
tk = logdet_calc.getPairwiseDistances()
logdet_calc.run(use_tk_adjustment=False, show_progress=False)
not_tk = logdet_calc.getPairwiseDistances()
self.assertNotEqual(tk, not_tk)
def test_logdet_pair_aa(self):
"""logdet shouldn't fail to produce distances for aa seqs"""
aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
aln = aln.getTranslation()
logdet_calc = LogDetPair(moltype=PROTEIN, alignment=aln)
logdet_calc.run(use_tk_adjustment=True, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
def test_logdet_missing_states(self):
"""should calculate logdet measurement with missing states"""
data = [('seq1', "GGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT"),
('seq2', "TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTNTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")]
aln = LoadSeqs(data=data, moltype=DNA)
logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
logdet_calc.run(use_tk_adjustment=True, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
self.assertTrue(dists.values()[0] is not None)
logdet_calc.run(use_tk_adjustment=False, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
self.assertTrue(dists.values()[0] is not None)
def test_logdet_variance(self):
"""calculate logdet variance consistent with hand calculation"""
data = [('seq1', "GGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT"),
('seq2', "TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")]
aln = LoadSeqs(data=data, moltype=DNA)
logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
logdet_calc.run(use_tk_adjustment=True, show_progress=False)
self.assertEqual(logdet_calc.Variances[1,1], None)
index = dict(zip('ACGT', range(4)))
J = numpy.zeros((4, 4))
for p in zip(data[0][1], data[1][1]):
J[index[p[0]], index[p[1]]] += 1
for i in range(4):
if J[i, i] == 0:
J[i, i] += 0.5
J /= J.sum()
M = numpy.linalg.inv(J)
var = 0.
for i in range(4):
for j in range(4):
var += M[j, i]**2 * J[i, j] - 1
var /= 16 * len(data[0][1])
logdet_calc.run(use_tk_adjustment=False, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
self.assertFloatEqual(logdet_calc.Variances[1,1], var, eps=1e-3)
def test_logdet_for_determinant_lte_zero(self):
"""returns distance of None if the determinant is <= 0"""
data = dict(seq1="AGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT",
seq2="TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")
aln = LoadSeqs(data=data, moltype=DNA)
logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
logdet_calc.run(use_tk_adjustment=True, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
self.assertTrue(dists.values()[0] is None)
logdet_calc.run(use_tk_adjustment=False, show_progress=False)
dists = logdet_calc.getPairwiseDistances()
self.assertTrue(dists.values()[0] is None)
def test_paralinear_pair_aa(self):
"""paralinear shouldn't fail to produce distances for aa seqs"""
aln = LoadSeqs('data/brca1_5.paml', moltype=DNA)
aln = aln.getTranslation()
paralinear_calc = ParalinearPair(moltype=PROTEIN, alignment=aln)
paralinear_calc.run(show_progress=False)
dists = paralinear_calc.getPairwiseDistances()
def test_paralinear_distance(self):
"""calculate paralinear variance consistent with hand calculation"""
data = [('seq1', "GGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT"),
('seq2', "TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")]
aln = LoadSeqs(data=data, moltype=DNA)
paralinear_calc = ParalinearPair(moltype=DNA, alignment=aln)
paralinear_calc.run(show_progress=False)
index = dict(zip('ACGT', range(4)))
J = numpy.zeros((4, 4))
for p in zip(data[0][1], data[1][1]):
J[index[p[0]], index[p[1]]] += 1
for i in range(4):
if J[i, i] == 0:
J[i, i] += 0.5
J /= J.sum()
M = numpy.linalg.inv(J)
f = J.sum(1), J.sum(0)
dist = -0.25 * numpy.log( numpy.linalg.det(J) / \
numpy.sqrt(f[0].prod() * f[1].prod()) )
self.assertFloatEqual(paralinear_calc.Dists[1,1], dist, eps=1e-3)
def test_paralinear_variance(self):
"""calculate paralinear variance consistent with hand calculation"""
data = [('seq1', "GGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT"),
('seq2', "TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")]
aln = LoadSeqs(data=data, moltype=DNA)
paralinear_calc = ParalinearPair(moltype=DNA, alignment=aln)
paralinear_calc.run(show_progress=False)
index = dict(zip('ACGT', range(4)))
J = numpy.zeros((4, 4))
for p in zip(data[0][1], data[1][1]):
J[index[p[0]], index[p[1]]] += 1
for i in range(4):
if J[i, i] == 0:
J[i, i] += 0.5
J /= J.sum()
M = numpy.linalg.inv(J)
f = J.sum(1), J.sum(0)
var = 0.
for i in range(4):
for j in range(4):
var += M[j, i]**2 * J[i, j]
var -= 1 / numpy.sqrt(f[0][i] * f[1][i])
var /= 16 * len(data[0][1])
self.assertFloatEqual(paralinear_calc.Variances[1,1], var, eps=1e-3)
def test_paralinear_for_determinant_lte_zero(self):
"""returns distance of None if the determinant is <= 0"""
data = dict(seq1="AGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT",
seq2="TAAAAAAAAAAGGGGGGGGGGGGGGGGGGTTTTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCC")
aln = LoadSeqs(data=data, moltype=DNA)
paralinear_calc = ParalinearPair(moltype=DNA, alignment=aln)
paralinear_calc.run(show_progress=False)
dists = paralinear_calc.getPairwiseDistances()
self.assertTrue(dists.values()[0] is None)
paralinear_calc.run(show_progress=False)
dists = paralinear_calc.getPairwiseDistances()
self.assertTrue(dists.values()[0] is None)
def test_paralinear_pair_dna(self):
"""calculate paralinear distance consistent with logdet distance"""
data = [('seq1', 'TAATTCATTGGGACGTCGAATCCGGCAGTCCTGCCGCAAAAGCTTCCGGAATCGAATTTTGGCA'),
('seq2', 'AAAAAAAAAAAAAAAACCCCCCCCCCCCCCCCTTTTTTTTTTTTTTTTGGGGGGGGGGGGGGGG')]
aln = LoadSeqs(data=data, moltype=DNA)
paralinear_calc = ParalinearPair(moltype=DNA, alignment=aln)
paralinear_calc.run(show_progress=False)
logdet_calc = LogDetPair(moltype=DNA, alignment=aln)
logdet_calc.run(show_progress=False)
self.assertFloatEqual(logdet_calc.Dists[1,1],
paralinear_calc.Dists[1,1], eps=1e-3)
self.assertFloatEqual(paralinear_calc.Variances[1,1],
logdet_calc.Variances[1,1], eps=1e-3)
if __name__ == '__main__':
main()
|