1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
.. jupyter-execute::
:hide-code:
import set_working_directory
Annotations
^^^^^^^^^^^
.. Gavin Huttley, Tom Elliot
Annotations with coordinates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For more extensive documentation about annotations see :ref:`seq-annotations`.
Automated introduction from reading genbank files
"""""""""""""""""""""""""""""""""""""""""""""""""
We load a sample genbank file with plenty of features and grab the CDS features.
.. jupyter-execute::
from cogent3.parse.genbank import RichGenbankParser
parser = RichGenbankParser(open("data/ST_genome_part.gb"))
for accession, seq in parser:
print(accession)
.. jupyter-execute::
cds = seq.get_annotations_matching("CDS")
print(cds)
Customising annotation construction from reading a genbank file
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
You can write your own code to construct annotation objects. One reason you might do this is some genbank files do not have a ``/gene`` tag on gene related features, instead only possessing a ``/locus_tag``. For illustrating the approach we only create annotations for ``CDS`` features. We write a custom callback function that uses the ``locus_tag`` as the ``Feature`` name.
.. jupyter-execute::
from cogent3.core.annotation import Feature
def add_annotation(seq, feature, spans):
type_ = feature["type"]
if type_ != "CDS":
return
name = feature.get("locus_tag", None)
if name and not isinstance(name, str):
name = " ".join(name)
seq.add_annotation(Feature, type_, name, spans)
parser = RichGenbankParser(
open("data/ST_genome_part.gb"), add_annotation=add_annotation
)
for accession, seq in parser: # just reading one accession,sequence
break
genes = seq.get_annotations_matching("CDS")
print(genes)
Creating directly on a sequence
"""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import DNA
from cogent3.core.annotation import Feature
s1 = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAA" "TTTTTTTTTTAAAAAGGGAACCCT", name="seq1"
)
print(s1[10:15]) # this will be exon 1
print(s1[30:40]) # this will be exon 2
print(s1[45:48]) # this will be exon 3
s2 = DNA.make_seq("CGAAACGTTT", name="seq2")
s3 = DNA.make_seq("CGAAACGTTT", name="seq3")
Via
"""
``add_annotation``
++++++++++++++++++
.. jupyter-execute::
from cogent3 import DNA
from cogent3.core.annotation import Feature
s1 = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAA" "TTTTTTTTTTAAAAAGGGAACCCT", name="seq1"
)
exon1 = s1.add_annotation(Feature, "exon", "A", [(10, 15)])
exon2 = s1.add_annotation(Feature, "exon", "B", [(30, 40)])
``add_feature``
+++++++++++++++
.. jupyter-execute::
from cogent3 import DNA
s1 = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAA" "TTTTTTTTTTAAAAAGGGAACCCT", name="seq1"
)
exon3 = s1.add_feature("exon", "C", [(45, 48)])
*There are other annotation types.*
Adding as a series or item-wise
"""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import DNA
s2 = DNA.make_seq("CGAAACGTTT", name="seq2")
cpgs_series = s2.add_feature("cpgsite", "cpg", [(0, 2), (5, 7)])
s3 = DNA.make_seq("CGAAACGTTT", name="seq3")
cpg1 = s3.add_feature("cpgsite", "cpg", [(0, 2)])
cpg2 = s3.add_feature("cpgsite", "cpg", [(5, 7)])
Taking the union of annotations
"""""""""""""""""""""""""""""""
Construct a pseudo-feature (``cds``) that's a union of other features (``exon1``, ``exon2``, ``exon3``).
.. jupyter-execute::
from cogent3 import DNA
s1 = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAA" "TTTTTTTTTTAAAAAGGGAACCCT", name="seq1"
)
exon1 = s1.add_feature("exon", "A", [(10, 15)])
exon2 = s1.add_feature("exon", "B", [(30, 40)])
exon3 = s1.add_feature("exon", "C", [(45, 48)])
cds = s1.get_region_covering_all([exon1, exon2, exon3])
Getting annotation coordinates
""""""""""""""""""""""""""""""
These are useful for doing custom things, e.g. you could construct intron features using the below.
.. jupyter-execute::
cds.get_coordinates()
Annotations have shadows
""""""""""""""""""""""""
A shadow is a span representing everything but the annotation.
.. jupyter-execute::
not_cds = cds.get_shadow()
not_cds
Compare to the coordinates of the original.
.. jupyter-execute::
cds
Adding to a sequence member of an alignment
"""""""""""""""""""""""""""""""""""""""""""
The following annotation is directly applied onto the sequence and so is in ungapped sequence coordinates.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln1 = make_aligned_seqs(
data=[["x", "-AAACCCCCA"], ["y", "TTTT--TTTT"]], array_align=False
)
seq_exon = aln1.get_seq("x").add_feature("exon", "A", [(3, 8)])
Adding to an alignment
""""""""""""""""""""""
We add an annotation directly onto an alignment. In this example we add a ``Variable`` that can be displayed as a red line on a drawing. The resulting annotation (``red_data`` here) is in **alignment coordinates**!
.. jupyter-execute::
from cogent3.core.annotation import Variable
red_data = aln1.add_annotation(
Variable, "redline", "align", [((0, 15), 1), ((15, 30), 2), ((30, 45), 3)]
)
Slicing sequences and alignments by annotations
"""""""""""""""""""""""""""""""""""""""""""""""
By a feature or coordinates returns same sequence span
.. jupyter-execute::
from cogent3 import DNA
s1 = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAA" "TTTTTTTTTTAAAAAGGGAACCCT", name="seq1"
)
exon1 = s1.add_feature("exon", "A", [(10, 15)])
exon2 = s1.add_feature("exon", "B", [(30, 40)])
s1[exon1]
s1[10:15]
Using the annotation object ``get_slice`` method returns the same thing.
.. jupyter-execute::
s1[exon2]
exon2.get_slice()
Slicing by pseudo-feature or feature series
"""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import DNA
s1 = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAA" "TTTTTTTTTTAAAAAGGGAACCCT", name="seq1"
)
exon1 = s1.add_feature("exon", "A", [(10, 15)])
exon2 = s1.add_feature("exon", "B", [(30, 40)])
exon3 = s1.add_feature("exon", "C", [(45, 48)])
cds = s1.get_region_covering_all([exon1, exon2, exon3])
print(s1[cds])
print(s1[exon1, exon2, exon3])
.. warning:: Slices are applied in order!
.. jupyter-execute::
print(s1)
print(s1[exon1, exon2, exon3])
print(s1[exon2])
print(s1[exon3])
print(s1[exon1, exon3, exon2])
Slice series must not be overlapping
""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
:raises: ValueError
s1[1:10, 9:15]
s1[exon1, exon1]
But ``get_region_covering_all`` resolves this, ensuring no overlaps.
.. jupyter-execute::
print(s1.get_region_covering_all([exon3, exon3]).get_slice())
You can slice an annotation itself
""""""""""""""""""""""""""""""""""
.. jupyter-execute::
print(s1[exon2])
ex2_start = exon2[0:3]
print(s1[ex2_start])
ex2_end = exon2[-3:]
print(s1[ex2_end])
Sequence vs Alignment slicing
"""""""""""""""""""""""""""""
You can't slice an alignment using an annotation from a sequence.
.. jupyter-execute::
:raises: ValueError
aln1[seq_exon]
Copying annotations
"""""""""""""""""""
You can copy annotations onto sequences with the same name, even if the length differs
.. jupyter-execute::
aln2 = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCC", "x")
match_exon = seq.add_feature("exon", "A", [(3, 8)])
aln2.get_seq("x").copy_annotations(seq)
copied = list(aln2.get_annotations_from_seq("x", "exon"))
copied
but if the feature lies outside the sequence being copied to, you get a lost span
.. jupyter-execute::
aln2 = make_aligned_seqs(data=[["x", "-AAAA"], ["y", "TTTTT"]], array_align=False)
seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCC", "x")
match_exon = seq.add_feature("exon", "A", [(5, 8)])
aln2.get_seq("x").copy_annotations(seq)
copied = list(aln2.get_annotations_from_seq("x", "exon"))
copied
copied[0].get_slice()
You can copy to a sequence with a different name, in a different alignment if the feature lies within the length
.. jupyter-execute::
# new test
aln2 = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCC", "x")
match_exon = seq.add_feature("exon", "A", [(5, 8)])
aln2.get_seq("y").copy_annotations(seq)
copied = list(aln2.get_annotations_from_seq("y", "exon"))
copied
If the sequence is shorter, again you get a lost span.
.. jupyter-execute::
aln2 = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
diff_len_seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCCCCCCCCCC", "x")
nonmatch = diff_len_seq.add_feature("repeat", "A", [(12, 14)])
aln2.get_seq("y").copy_annotations(diff_len_seq)
copied = list(aln2.get_annotations_from_seq("y", "repeat"))
copied
Querying
""""""""
You need to get a corresponding annotation projected into alignment coordinates via a query.
.. jupyter-execute::
aln_exon = aln1.get_annotations_from_any_seq("exon")
print(aln1[aln_exon])
Querying produces objects only valid for their source
"""""""""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
:raises: ValueError
cpgsite2 = s2.get_annotations_matching("cpgsite")
print(s2[cpgsite2])
cpgsite3 = s3.get_annotations_matching("cpgsite")
s2[cpgsite3]
Querying for absent annotation
""""""""""""""""""""""""""""""
You get back an empty list, and slicing with this returns an empty sequence.
.. jupyter-execute::
# this test is new
dont_exist = s2.get_annotations_matching("dont_exist")
dont_exist
s2[dont_exist]
Querying features that span gaps in alignments
""""""""""""""""""""""""""""""""""""""""""""""
If you query for a feature from a sequence, it's alignment coordinates may be discontinuous.
.. jupyter-execute::
aln3 = make_aligned_seqs(
data=[["x", "C-CCCAAAAA"], ["y", "-T----TTTT"]], array_align=False
)
exon = aln3.get_seq("x").add_feature("exon", "ex1", [(0, 4)])
print(exon.get_slice())
aln_exons = list(aln3.get_annotations_from_seq("x", "exon"))
print(aln_exons)
print(aln3[aln_exons])
.. note:: The ``T`` opposite the gap is missing since this approach only returns positions directly corresponding to the feature.
``as_one_span`` unifies features with discontinuous alignment coordinates
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
To get positions spanned by a feature, including gaps, use ``as_one_span``.
.. jupyter-execute::
unified = aln_exons[0].as_one_span()
print(aln3[unified])
Behaviour of annotations on nucleic acid sequences
""""""""""""""""""""""""""""""""""""""""""""""""""
Reverse complementing a sequence **does not** reverse annotations, that is they retain the reference to the frame for which they were defined.
.. jupyter-execute::
plus = DNA.make_seq("CCCCCAAAAAAAAAATTTTTTTTTTAAAGG")
plus_rpt = plus.add_feature("blah", "a", [(5, 15), (25, 28)])
print(plus[plus_rpt])
minus = plus.rc()
print(minus)
minus_rpt = minus.get_annotations_matching("blah")
print(minus[minus_rpt])
Masking annotated regions
"""""""""""""""""""""""""
We mask the CDS regions.
.. jupyter-execute::
from cogent3.parse.genbank import RichGenbankParser
parser = RichGenbankParser(open("data/ST_genome_part.gb"))
seq = [seq for accession, seq in parser][0]
no_cds = seq.with_masked_annotations("CDS")
print(no_cds[150:400])
The above sequence could then have positions filtered so no position with the ambiguous character '?' was present.
Masking annotated regions on alignments
"""""""""""""""""""""""""""""""""""""""
We mask exon's on an alignment.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data=[["x", "C-CCCAAAAAGGGAA"], ["y", "-T----TTTTG-GTT"]],
moltype="dna",
array_align=False,
)
exon = aln.get_seq("x").add_feature("exon", "norwegian", [(0, 4)])
print(aln.with_masked_annotations("exon", mask_char="?"))
These also persist through reverse complement operations.
.. jupyter-execute::
rc = aln.rc()
print(rc)
print(rc.with_masked_annotations("exon", mask_char="?"))
You can take mask of the shadow
"""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import DNA
s = DNA.make_seq("CCCCAAAAAGGGAA", "x")
exon = s.add_feature("exon", "norwegian", [(0, 4)])
rpt = s.add_feature("repeat", "norwegian", [(9, 12)])
rc = s.rc()
print(s.with_masked_annotations("exon", shadow=True))
print(rc.with_masked_annotations("exon", shadow=True))
print(s.with_masked_annotations(["exon", "repeat"], shadow=True))
print(rc.with_masked_annotations(["exon", "repeat"], shadow=True))
What features of a certain type are available?
""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import DNA
s = DNA.make_seq("ATGACCCTGTAAAAAATGTGTTAACCC", name="a")
cds1 = s.add_feature("cds", "cds1", [(0, 12)])
cds2 = s.add_feature("cds", "cds2", [(15, 24)])
all_cds = s.get_annotations_matching("cds")
all_cds
Getting all features of a type, or everything but that type
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
The annotation methods ``get_region_covering_all`` and ``get_shadow`` can be used to grab all the coding sequences or non-coding sequences in a ``DnaSequence`` object.
.. jupyter-execute::
from cogent3.parse.genbank import RichGenbankParser
parser = RichGenbankParser(open("data/ST_genome_part.gb"))
seq = [seq for accession, seq in parser][0]
all_cds = seq.get_annotations_matching("CDS")
coding_seqs = seq.get_region_covering_all(all_cds)
coding_seqs
coding_seqs.get_slice()
noncoding_seqs = coding_seqs.get_shadow()
noncoding_seqs
noncoding_seqs.get_slice()
Getting sequence features when you have an alignment object
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Sequence features can be accessed via a containing ``Alignment``.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
print(aln)
exon = aln.get_seq("x").add_feature("exon", "1", [(3, 8)])
aln_exons = aln.get_annotations_from_seq("x", "exon")
aln_exons = aln.get_annotations_from_any_seq("exon")
aln_exons
Annotation display on sequences
"""""""""""""""""""""""""""""""
We can display annotations on sequences, writing to file.
We first make a sequence and add some annotations.
.. jupyter-execute::
from cogent3 import DNA
seq = DNA.make_seq("aaaccggttt" * 10)
v = seq.add_feature("exon", "exon", [(20, 35)])
v = seq.add_feature("repeat_unit", "repeat_unit", [(39, 49)])
v = seq.add_feature("repeat_unit", "rep2", [(49, 60)])
.. todo:: document info attribute
.. todo:: document how to visualise annotations
.. following cleans up files
.. jupyter-execute::
:hide-code:
from cogent3.util.io import remove_files
remove_files(["annotated_%d.png" % i for i in range(1, 4)], error_on_missing=False)
|