1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
Annotating alignments and sequences
===================================
.. sectionauthor:: Peter Maxwell, Gavin Huttley
A Sequence with a couple of exons on it.
.. jupyter-execute::
from cogent3 import DNA
from cogent3.core.annotation import Feature
s = DNA.make_seq("AAGAAGAAGACCCCCAAAAAAAAAATTTTTTTTTTAAAAAAAAAAAAA", name="Orig")
exon1 = s.add_annotation(Feature, "exon", "fred", [(10, 15)])
exon2 = s.add_annotation(Feature, "exon", "trev", [(30, 40)])
The corresponding sequence can be extracted either with slice notation or by asking the feature to do it, since the feature knows what sequence it belongs to.
.. jupyter-execute::
s[exon1]
exon1.get_slice()
Usually the only way to get a ``Feature`` object like ``exon1`` is to ask the sequence for it. There is one method for querying annotations by type and optionally by name:
.. jupyter-execute::
exons = s.get_annotations_matching("exon")
print(exons)
If the sequence does not have a matching feature you get back an empty list, and slicing the sequence with that returns a sequence of length 0.
.. jupyter-execute::
dont_exist = s.get_annotations_matching("dont_exist")
dont_exist
s[dont_exist]
To construct a pseudo-feature covering (or excluding) multiple features, use ``get_region_covering_all``:
.. jupyter-execute::
print(s.get_region_covering_all(exons))
print(s.get_region_covering_all(exons).get_shadow())
eg: all the exon sequence:
.. jupyter-execute::
s.get_region_covering_all(exons).get_slice()
or with slice notation:
.. jupyter-execute::
s[exon1, exon2]
Though ``.get_region_covering_all`` also guarantees no overlaps within the result, slicing does not:
.. jupyter-execute::
:raises: ValueError
print(s.get_region_covering_all(exons + exons))
s[exon1, exon1, exon1, exon1, exon1]
You can use features, maps, slices or integers, but non-monotonic slices are not allowed:
.. jupyter-execute::
:raises: ValueError
s[15:20, 5:16]
Features are themselves sliceable:
.. jupyter-execute::
exon1[0:3].get_slice()
When sequences are concatenated they keep their (non-overlapping) annotations:
.. jupyter-execute::
c = s[exon1[4:]] + s
print(len(c))
for feat in c.annotations:
print(feat)
Since features know their parents you can't use a feature from one sequence to slice another:
.. jupyter-execute::
:raises: ValueError
print(c[exon1])
Features are generally attached to the thing they annotate, but in those cases where a free-floating feature is created it can later be attached:
.. jupyter-execute::
len(s.annotations)
region = s.get_region_covering_all(exons)
len(s.annotations)
region.attach()
len(s.annotations)
region.detach()
len(s.annotations)
When dealing with sequences that can be reverse complemented (e.g. ``DnaSequence``) features are **not** reversed. Features are considered to have strand specific meaning (.e.g CDS, exons) and so stay on their original strands. We create a sequence with a CDS that spans multiple exons, and show that after getting the reverse complement we have exactly the same result from getting the CDS annotation.
.. jupyter-execute::
plus = DNA.make_seq("AAGGGGAAAACCCCCAAAAAAAAAATTTTTTTTTTAAA", name="plus")
plus_cds = plus.add_annotation(Feature, "CDS", "gene", [(2, 6), (10, 15), (25, 35)])
print(plus_cds.get_slice())
minus = plus.rc()
minus_cds = minus.get_annotations_matching("CDS")[0]
print(minus_cds.get_slice())
Sequence features can be accessed via a containing ``Alignment``:
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
print(aln)
exon = aln.get_seq("x").add_annotation(Feature, "exon", "fred", [(3, 8)])
aln_exons = aln.get_annotations_from_seq("x", "exon")
aln_exons = aln.get_annotations_from_any_seq("exon")
But these will be returned as **alignment** features with locations in alignment coordinates.
.. jupyter-execute::
print(exon)
print(aln_exons[0])
print(aln_exons[0].get_slice())
aln_exons[0].attach()
len(aln.annotations)
Similarly alignment features can be projected onto the aligned sequences, where they may end up falling across gaps:
.. jupyter-execute::
exons = aln.get_projected_annotations("y", "exon")
print(exons)
print(aln.get_seq("y")[exons[0].map.without_gaps()])
We copy the annotations from another sequence,
.. jupyter-execute::
aln = make_aligned_seqs(
[["x", "-AAAAAAAAA"], ["y", "TTTT--CCCC"]], array_align=False
)
s = DNA.make_seq("AAAAAAAAA", name="x")
exon = s.add_annotation(Feature, "exon", "fred", [(3, 8)])
exon = aln.get_seq("x").copy_annotations(s)
aln_exons = list(aln.get_annotations_from_seq("x", "exon"))
print(aln_exons)
even if the name is different.
.. jupyter-execute::
exon = aln.get_seq("y").copy_annotations(s)
aln_exons = list(aln.get_annotations_from_seq("y", "exon"))
print(aln_exons)
print(aln[aln_exons])
If the feature lies outside the sequence being copied to, you get a lost span
.. jupyter-execute::
aln = make_aligned_seqs([["x", "-AAAA"], ["y", "TTTTT"]], array_align=False)
seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCC", "x")
exon = seq.add_feature("exon", "A", [(5, 8)])
aln.get_seq("x").copy_annotations(seq)
copied = list(aln.get_annotations_from_seq("x", "exon"))
copied
copied[0].get_slice()
You can copy to a sequence with a different name, in a different alignment if the feature lies within the length
.. jupyter-execute::
aln = make_aligned_seqs(
[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCC", "x")
match_exon = seq.add_feature("exon", "A", [(5, 8)])
aln.get_seq("y").copy_annotations(seq)
copied = list(aln.get_annotations_from_seq("y", "exon"))
copied
If the sequence is shorter, again you get a lost span.
.. jupyter-execute::
aln = make_aligned_seqs(
[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
diff_len_seq = DNA.make_seq("CCCCCCCCCCCCCCCCCCCCCCCCCCCC", "x")
nonmatch = diff_len_seq.add_feature("repeat", "A", [(12, 14)])
aln.get_seq("y").copy_annotations(diff_len_seq)
copied = list(aln.get_annotations_from_seq("y", "repeat"))
copied
We consider cases where there are terminal gaps.
.. jupyter-execute::
aln = make_aligned_seqs(
[["x", "-AAAAAAAAA"], ["y", "------TTTT"]], array_align=False
)
exon = aln.get_seq("x").add_feature("exon", "fred", [(3, 8)])
aln_exons = list(aln.get_annotations_from_seq("x", "exon"))
print(aln_exons)
print(aln_exons[0].get_slice())
aln = make_aligned_seqs(
[["x", "-AAAAAAAAA"], ["y", "TTTT--T---"]], array_align=False
)
exon = aln.get_seq("x").add_feature("exon", "fred", [(3, 8)])
aln_exons = list(aln.get_annotations_from_seq("x", "exon"))
print(aln_exons[0].get_slice())
In this case, only those residues included within the feature are covered - note the omission of the T in ``y`` opposite the gap in ``x``.
.. jupyter-execute::
aln = make_aligned_seqs(
[["x", "C-CCCAAAAA"], ["y", "-T----TTTT"]], moltype="dna", array_align=False
)
print(aln)
exon = aln.get_seq("x").add_feature("exon", "ex1", [(0, 4)])
print(exon)
print(exon.get_slice())
aln_exons = list(aln.get_annotations_from_seq("x", "exon"))
print(aln_exons)
print(aln_exons[0].get_slice())
``Feature.as_one_span()``, is applied to the exon that straddles the gap in ``x``. The result is we preserve that feature.
.. jupyter-execute::
print(aln_exons[0].as_one_span().get_slice())
These properties also are consistently replicated with reverse complemented sequences.
.. jupyter-execute::
aln_rc = aln.rc()
rc_exons = list(aln_rc.get_annotations_from_any_seq("exon"))
print(aln_rc[rc_exons]) # not using as_one_span, so gap removed from x
print(aln_rc[rc_exons[0].as_one_span()])
Features can provide their coordinates, useful for custom analyses.
.. jupyter-execute::
all_exons = aln.get_region_covering_all(aln_exons)
coords = all_exons.get_coordinates()
assert coords == [(0, 1), (2, 5)]
Annotated regions can be masked (observed sequence characters replaced by another), either through the sequence on which they reside or by projection from the alignment. Note that ``mask_char`` must be a valid character for the sequence ``MolType``. Either the features (multiple can be named), or their shadow, can be masked.
We create an alignment with a sequence that has two different annotation types.
.. jupyter-execute::
aln = make_aligned_seqs(
[["x", "C-CCCAAAAAGGGAA"], ["y", "-T----TTTTG-GTT"]], array_align=False
)
print(aln)
exon = aln.get_seq("x").add_feature("exon", "norwegian", [(0, 4)])
print(exon.get_slice())
repeat = aln.get_seq("x").add_feature("repeat", "blue", [(9, 12)])
print(repeat.get_slice())
repeat = aln.get_seq("y").add_feature("repeat", "frog", [(5, 7)])
print(repeat.get_slice())
Each sequence should correctly mask either the single feature, it's shadow, or the multiple features, or shadow.
.. jupyter-execute::
print(aln.get_seq("x").with_masked_annotations("exon", mask_char="?"))
print(aln.get_seq("x").with_masked_annotations("exon", mask_char="?", shadow=True))
print(aln.get_seq("x").with_masked_annotations(["exon", "repeat"], mask_char="?"))
print(
aln.get_seq("x").with_masked_annotations(
["exon", "repeat"], mask_char="?", shadow=True
)
)
print(aln.get_seq("y").with_masked_annotations("exon", mask_char="?"))
print(aln.get_seq("y").with_masked_annotations("repeat", mask_char="?"))
print(
aln.get_seq("y").with_masked_annotations("repeat", mask_char="?", shadow=True)
)
The same methods can be applied to annotated Alignment's.
.. jupyter-execute::
print(aln.with_masked_annotations("exon", mask_char="?"))
print(aln.with_masked_annotations("exon", mask_char="?", shadow=True))
print(aln.with_masked_annotations("repeat", mask_char="?"))
print(aln.with_masked_annotations("repeat", mask_char="?", shadow=True))
print(aln.with_masked_annotations(["repeat", "exon"], mask_char="?"))
print(aln.with_masked_annotations(["repeat", "exon"], shadow=True))
It shouldn't matter whether annotated coordinates are entered separately, or as a series.
.. jupyter-execute::
data = [["human", "CGAAACGTTT"], ["mouse", "CTAAACGTCG"]]
as_series = make_aligned_seqs(data, array_align=False)
as_items = make_aligned_seqs(data, array_align=False)
We add annotations to the sequences as a series.
.. jupyter-execute::
as_series.get_seq("human").add_feature("cpgsite", "cpg", [(0, 2), (5, 7)])
as_series.get_seq("mouse").add_feature("cpgsite", "cpg", [(5, 7), (8, 10)])
We add the annotations to the sequences one segment at a time.
.. jupyter-execute::
as_items.get_seq("human").add_feature("cpgsite", "cpg", [(0, 2)])
as_items.get_seq("human").add_feature("cpgsite", "cpg", [(5, 7)])
as_items.get_seq("mouse").add_feature("cpgsite", "cpg", [(5, 7)])
as_items.get_seq("mouse").add_feature("cpgsite", "cpg", [(8, 10)])
These different constructions should generate the same output.
.. jupyter-execute::
serial = as_series.with_masked_annotations(["cpgsite"])
print(serial)
itemwise = as_items.with_masked_annotations(["cpgsite"])
print(itemwise)
Annotations should be correctly masked, whether the sequence has been reverse complemented or not. We use the plus/minus strand CDS containing sequences created above.
.. jupyter-execute::
print(plus.with_masked_annotations("CDS"))
print(minus.with_masked_annotations("CDS"))
|