1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
#!/usr/bin/env python
import math
from unittest import TestCase, main
from cogent3 import DNA, make_aligned_seqs
from cogent3.evolve.best_likelihood import (
BestLogLikelihood,
_take,
_transpose,
aligned_columns_to_rows,
count_column_freqs,
get_G93_lnL_from_array,
get_ML_probs,
)
__author__ = "Helen Lindsay"
__copyright__ = "Copyright 2007-2022, The Cogent Project"
__credits__ = ["Gavin Huttley", "Helen Lindsay"]
__license__ = "BSD-3"
__version__ = "2023.2.12a1"
__maintainer__ = "Helen Lindsay"
__email__ = "helen.lindsay@anu.edu.au"
__status__ = "Production"
from numpy.testing import assert_allclose
IUPAC_DNA_ambiguities = "NRYWSKMBDHV"
def makeSampleAlignment(gaps=False, ambiguities=False):
if gaps:
seqs_list = ["AAA--CTTTGG-T", "CCCCC-TATG-GT", "-AACCCTTTGGGT"]
elif ambiguities:
seqs_list = ["AARNCCTTTGGC", "CCNYCCTTTGSG", "CAACCCTGWGGG"]
else:
seqs_list = ["AAACCCGGGTTTA", "CCCGGGTTTAAAC", "GGGTTTAAACCCG"]
seqs = list(zip("abc", seqs_list))
return make_aligned_seqs(data=seqs)
class TestGoldman93(TestCase):
def setUp(self):
self.aln = makeSampleAlignment()
self.gapped_aln = makeSampleAlignment(gaps=True)
self.ambig_aln = makeSampleAlignment(ambiguities=True)
def test_aligned_columns_to_rows(self):
obs = aligned_columns_to_rows(self.aln[:-1], 3)
expect = [
["AAA", "CCC", "GGG"],
["CCC", "GGG", "TTT"],
["GGG", "TTT", "AAA"],
["TTT", "AAA", "CCC"],
]
assert obs == expect, (obs, expect)
obs = aligned_columns_to_rows(self.aln, 1)
expect = [
["A", "C", "G"],
["A", "C", "G"],
["A", "C", "G"],
["C", "G", "T"],
["C", "G", "T"],
["C", "G", "T"],
["G", "T", "A"],
["G", "T", "A"],
["G", "T", "A"],
["T", "A", "C"],
["T", "A", "C"],
["T", "A", "C"],
["A", "C", "G"],
]
self.assertEqual(obs, expect)
obs = aligned_columns_to_rows(self.gapped_aln[:-1], 3, allowed_chars="ACGT")
expect = [["TTT", "TAT", "TTT"]]
self.assertEqual(obs, expect)
obs = aligned_columns_to_rows(
self.ambig_aln, 2, exclude_chars=IUPAC_DNA_ambiguities
)
expect = [["AA", "CC", "CA"], ["CC", "CC", "CC"], ["TT", "TT", "TG"]]
self.assertEqual(obs, expect)
def test_count_column_freqs(self):
columns = aligned_columns_to_rows(self.aln, 1)
obs = count_column_freqs(columns)
expect = {"A C G": 4, "C G T": 3, "G T A": 3, "T A C": 3}
self.assertEqual(obs, expect)
columns = aligned_columns_to_rows(self.aln[:-1], 2)
obs = count_column_freqs(columns)
expect = {
"AA CC GG": 1,
"AC CG GT": 1,
"CC GG TT": 1,
"GG TT AA": 1,
"GT TA AC": 1,
"TT AA CC": 1,
}
self.assertEqual(obs, expect)
def test__transpose(self):
"""test transposing an array"""
a = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
e = [[0, 3, 6, 9], [1, 4, 7, 10], [2, 5, 8, 11]]
self.assertEqual(_transpose(a), e)
def test__take(self):
"""test taking selected rows from an array"""
e = [[0, 3, 6, 9], [1, 4, 7, 10], [2, 5, 8, 11]]
self.assertEqual(_take(e, [0, 1]), [[0, 3, 6, 9], [1, 4, 7, 10]])
self.assertEqual(_take(e, [1, 2]), [[1, 4, 7, 10], [2, 5, 8, 11]])
self.assertEqual(_take(e, [0, 2]), [[0, 3, 6, 9], [2, 5, 8, 11]])
def test_get_ML_probs(self):
columns = aligned_columns_to_rows(self.aln, 1)
obs = get_ML_probs(columns, with_patterns=True)
expect = {
"A C G": 4 / 13.0,
"C G T": 3 / 13.0,
"G T A": 3 / 13.0,
"T A C": 3 / 13.0,
}
sum = 0
for pattern, lnL, freq in obs:
assert_allclose(lnL, expect[pattern])
sum += lnL
self.assertTrue(lnL >= 0)
assert_allclose(sum, 1)
def test_get_G93_lnL_from_array(self):
columns = aligned_columns_to_rows(self.aln, 1)
obs = get_G93_lnL_from_array(columns)
expect = math.log(math.pow(4 / 13.0, 4)) + 3 * math.log(math.pow(3 / 13.0, 3))
assert_allclose(obs, expect)
def test_BestLogLikelihood(self):
obs = BestLogLikelihood(self.aln, DNA.alphabet)
expect = math.log(math.pow(4 / 13.0, 4)) + 3 * math.log(math.pow(3 / 13.0, 3))
assert_allclose(obs, expect)
lnL, l = BestLogLikelihood(self.aln, DNA.alphabet, return_length=True)
self.assertEqual(l, len(self.aln))
if __name__ == "__main__":
main()
|