1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
.. jupyter-execute::
:hide-code:
import set_working_directory
Using a nucleotide model
========================
We load the unaligned sequences we will use in our examples.
.. jupyter-execute::
:raises:
from cogent3 import get_app
loader = get_app("load_unaligned", format="fasta")
seqs = loader("data/SCA1-cds.fasta")
.. note:: We use an app loader, but since this is just a single file we could have used the ``cogent3.load_unaligned_seqs()`` function.
Nucleotide alignment with default settings
------------------------------------------
The default setting for "nucleotide" is a HKY85 model.
.. jupyter-execute::
:raises:
from cogent3 import get_app
nt_aligner = get_app("progressive_align", "nucleotide")
aligned = nt_aligner(seqs)
aligned
.. note:: If you specify ``unique_guides=True``, a guide tree will be estimated for every alignment.
Specify a different distance measure for estimating the guide tree
------------------------------------------------------------------
For the nucleotide case, you can use TN93 or paralinear.
.. jupyter-execute::
:raises:
nt_aligner = get_app("progressive_align", "nucleotide", distance="TN93")
aligned = nt_aligner(seqs)
aligned
Providing a guide tree
----------------------
.. jupyter-execute::
:raises:
tree = "((Chimp:0.001,Human:0.001):0.0076,Macaque:0.01,((Rat:0.01,Mouse:0.01):0.02,Mouse_Lemur:0.02):0.01)"
nt_aligner = get_app("progressive_align", "nucleotide", guide_tree=tree)
aligned = nt_aligner(seqs)
aligned
.. warning:: The guide tree must have branch lengths, otherwise a ``ValueError`` is raised.
Specifying the substitution model
---------------------------------
You can use any ``cogent3`` nucleotide substitution model. For a list of all available, see ``cogent3.available_models()``.
.. jupyter-execute::
:raises:
tree = "((Chimp:0.001,Human:0.001):0.0076,Macaque:0.01,((Rat:0.01,Mouse:0.01):0.02,Mouse_Lemur:0.02):0.01)"
nt_aligner = get_app("progressive_align", "F81", guide_tree=tree)
aligned = nt_aligner(seqs)
aligned
Alignment settings and file provenance are recorded in the ``info`` attribute
-----------------------------------------------------------------------------
.. jupyter-execute::
:raises:
aligned.info
|