File: evo-nstat-codon-model.rst

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (42 lines) | stat: -rw-r--r-- 1,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
.. jupyter-execute::
    :hide-code:

    import set_working_directory

Applying GNC, a non-stationary codon model
------------------------------------------

See `Kaehler et al <https://www.ncbi.nlm.nih.gov/pubmed/28175284>`__ for the formal description of this model. Note that perform hypothesis testing using this model elsewhere.

We apply this to a sample alignment.

.. jupyter-execute::

    from cogent3 import get_app

    loader = get_app("load_aligned", format="fasta", moltype="dna")
    aln = loader("data/primate_brca1.fasta")

The model is specified using it’s abbreviation.

.. jupyter-execute::

    model = get_app("model", "GNC", tree="data/primate_brca1.tree")
    result = model(aln)
    result

.. jupyter-execute::

    result.lf

We can obtain the tree with branch lengths as ENS
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If this tree is written to newick (using the ``write()`` method), the lengths will now be ENS.

.. jupyter-execute::

    tree = result.tree
    fig = tree.get_figure()
    fig.scale_bar = "top right"
    fig.show(width=500, height=500)