1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
.. jupyter-execute::
:hide-code:
import set_working_directory
Sequence Collections and Alignments
-----------------------------------
.. authors, Gavin Huttley, Kristian Rother, Patrick Yannul, Tom Elliott, Jan Kosinski
For loading collections of unaligned or aligned sequences see :ref:`load-seqs`.
What's the difference between ``Alignment`` and ``ArrayAlignment``?
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``Alignment`` class can be annotated, meaning you can add annotations to an Alignment or it's member sequences and you can slice the alignment via those objects. This capability is achieved, under the hood, by having the individual sequences represent gaps as a "span", rather than explicitly as a "-" character in the sequence itself. This representation is also efficient for very long sequences.
The ``ArrayAlignment`` class cannot be annotated. The class represents its sequences as a ``numpy.ndarray`` instance. Thus, the gaps are included as a state in the array. This class is better at handling a lot of sequences and should typically be faster. This is the default class returned by the ``load_aligned_seqs`` and ``make_aligned_seqs`` functions. (See :ref:`load-seqs` for details.)
You can change alignment types using the ``to_type()`` method.
Basic Collection objects
^^^^^^^^^^^^^^^^^^^^^^^^
Constructing a ``SequenceCollection`` or ``Alignment`` object from strings
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import make_aligned_seqs, make_unaligned_seqs
dna = {"seq1": "ATGACC", "seq2": "ATCGCC"}
seqs = make_aligned_seqs(data=dna, moltype="dna")
type(seqs)
.. jupyter-execute::
seqs = make_unaligned_seqs(dna, moltype="dna")
type(seqs)
Constructing a ``ArrayAlignment`` using ``make_aligned_seqs``
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import make_aligned_seqs
dna = {"seq1": "ATGACC", "seq2": "ATCGCC"}
seqs = make_aligned_seqs(data=dna, moltype="dna", array_align=True)
print(type(seqs))
seqs
Converting a ``SequenceCollection`` to FASTA format
"""""""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_unaligned_seqs
seqs = load_unaligned_seqs("data/test.paml")
seqs
Adding new sequences to an existing collection or alignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
New sequences can be either appended or inserted using the ``add_seqs`` method. More than one sequence can be added at the same time. Note that ``add_seqs`` does not modify the existing collection/alignment, it creates a new one.
Appending the sequences
"""""""""""""""""""""""
``add_seqs`` without additional parameters will append the sequences to the end of the collection/alignment.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
[("seq1", "ATGAA------"), ("seq2", "ATG-AGTGATG"), ("seq3", "AT--AG-GATG")],
moltype="dna",
)
aln
.. jupyter-execute::
new_seqs = make_aligned_seqs(
[("seq0", "ATG-AGT-AGG"), ("seq4", "ATGCC------")], moltype="dna"
)
new_aln = aln.add_seqs(new_seqs)
new_aln
.. note:: The order is not preserved if you use the ``to_fasta()`` method, which sorts sequences by name.
Inserting the sequences
"""""""""""""""""""""""
Sequences can be inserted into an alignment at the specified position using either the ``before_name`` or ``after_name`` arguments.
.. jupyter-execute::
new_aln = aln.add_seqs(new_seqs, before_name="seq2")
new_aln
.. jupyter-execute::
new_aln = aln.add_seqs(new_seqs, after_name="seq2")
new_aln
Inserting sequence(s) based on their alignment to a reference sequence
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Already aligned sequences can be added to an existing ``Alignment`` object and aligned at the same time using the ``add_from_ref_aln`` method. The alignment is performed based on their alignment to a reference sequence (which must be present in both alignments). The method assumes the first sequence in ``ref_aln.names[0]`` is the reference.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
[("seq1", "ATGAA------"), ("seq2", "ATG-AGTGATG"), ("seq3", "AT--AG-GATG")],
moltype="dna",
)
ref_aln = make_aligned_seqs(
[("seq3", "ATAGGATG"), ("seq0", "ATG-AGCG"), ("seq4", "ATGCTGGG")],
moltype="dna",
)
new_aln = aln.add_from_ref_aln(ref_aln)
new_aln
``add_from_ref_aln`` has the same arguments as ``add_seqs`` so ``before_name`` and ``after_name`` can be used to insert the new sequences at the desired position.
.. note:: This method does not work with the ``ArrayAlignment`` class.
Removing all columns with gaps in a named sequence
++++++++++++++++++++++++++++++++++++++++++++++++++
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
[("seq1", "ATGAA---TG-"), ("seq2", "ATG-AGTGATG"), ("seq3", "AT--AG-GATG")],
moltype="dna",
)
new_aln = aln.get_degapped_relative_to("seq1")
new_aln
The elements of a collection or alignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Accessing individual sequences from a collection or alignment by name
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Using the ``get_seq`` method allows for extracting an unaligned sequence from a collection or alignment by name.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
[("seq1", "ATGAA------"), ("seq2", "ATG-AGTGATG"), ("seq3", "AT--AG-GATG")],
moltype="dna",
array_align=False,
)
seq = aln.get_seq("seq1")
seq.name
type(seq)
seq.is_gapped()
Alternatively, if you want to extract the aligned (i.e., gapped) sequence from an alignment, you can use ``get_gapped_seq``.
.. jupyter-execute::
seq = aln.get_gapped_seq("seq1")
seq.is_gapped()
seq
To see the names of the sequences in a sequence collection, use the ``names`` attribute.
.. jupyter-execute::
aln.names
Slice the sequences from an alignment like a list
"""""""""""""""""""""""""""""""""""""""""""""""""
The usual approach is to access a ``SequenceCollection`` or ``Alignment`` object as a dictionary, obtaining the individual sequences using the titles as "keys" (above). However, one can also iterate through the collection like a list.
.. jupyter-execute::
from cogent3 import load_aligned_seqs, load_unaligned_seqs
fn = "data/long_testseqs.fasta"
seqs = load_unaligned_seqs(fn, moltype="dna")
my_seq = seqs.seqs[0]
my_seq[:24]
.. jupyter-execute::
type(my_seq)
.. jupyter-execute::
aln = load_aligned_seqs(fn, moltype="dna")
aln.seqs[0][:24]
Getting a subset of sequences from the alignment
""""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/test.paml", moltype="dna")
aln.names
.. jupyter-execute::
new = aln.take_seqs(["Human", "HowlerMon"])
new.names
.. note:: The ``Alignment`` class (which you get if you set ``array_align=False``) is more memory efficient. The subset contain references to the original sequences, not copies.
Alignments
^^^^^^^^^^
Creating an ``Alignment`` object from a ``SequenceCollection``
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_unaligned_seqs
from cogent3.core.alignment import Alignment
seq = load_unaligned_seqs("data/test.paml", moltype="dna")
seq
.. jupyter-execute::
aln = Alignment(seq)
aln
Convert alignment to DNA, RNA or PROTEIN moltypes
"""""""""""""""""""""""""""""""""""""""""""""""""
This is useful if you've loaded a sequence alignment without specifying the moltype and later need to convert it using the dedicated method
.. jupyter-execute::
from cogent3 import make_aligned_seqs
data = [("a", "ACG---"), ("b", "CCTGGG")]
aln = make_aligned_seqs(data=data)
dna = aln.to_dna()
dna
Or using the generic ``to_moltype()`` method
.. jupyter-execute::
aln.to_moltype("dna")
To RNA
.. jupyter-execute::
from cogent3 import make_aligned_seqs
data = [("a", "ACG---"), ("b", "CCUGGG")]
aln = make_aligned_seqs(data=data)
rna = aln.to_rna()
rna
To PROTEIN
.. jupyter-execute::
from cogent3 import make_aligned_seqs
data = [("x", "TYV"), ("y", "TE-")]
aln = make_aligned_seqs(data=data)
prot = aln.to_protein()
prot
Handling gaps
"""""""""""""
Remove all gaps from an alignment in FASTA format
+++++++++++++++++++++++++++++++++++++++++++++++++
This necessarily returns a ``SequenceCollection``.
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/primate_cdx2_promoter.fasta")
degapped = aln.degap()
print(type(degapped))
.. TODO the following should be preceded by a section describing the write method and format argument
Writing sequences to file
"""""""""""""""""""""""""
Both collection and alignment objects have a ``write`` method. The output format is inferred from the filename suffix,
.. jupyter-execute::
from cogent3 import make_aligned_seqs
dna = {"seq1": "ATGACC", "seq2": "ATCGCC"}
aln = make_aligned_seqs(data=dna, moltype="dna")
aln.write("sample.fasta")
or by the ``format`` argument.
.. jupyter-execute::
aln.write("sample", format="fasta")
.. now clean the files up
.. jupyter-execute::
from cogent3.util.io import remove_files
remove_files(["sample", "sample.fasta"], error_on_missing=False)
Converting an alignment to FASTA format
"""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
from cogent3.core.alignment import Alignment
seq = load_aligned_seqs("data/long_testseqs.fasta")
aln = Alignment(seq)
fasta_align = aln
Converting an alignment into Phylip format
""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
from cogent3.core.alignment import Alignment
seq = load_aligned_seqs("data/test.paml")
aln = Alignment(seq)
got = aln.to_phylip()
print(got)
Converting an alignment to a list of strings
""""""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
from cogent3.core.alignment import Alignment
seq = load_aligned_seqs("data/test.paml")
aln = Alignment(seq)
string_list = aln.to_dict().values()
Slicing an alignment
^^^^^^^^^^^^^^^^^^^^
By rows (sequences)
"""""""""""""""""""
An ``Alignment`` can be sliced
.. jupyter-execute::
from cogent3 import load_aligned_seqs
fn = "data/long_testseqs.fasta"
aln = load_aligned_seqs(fn, moltype="dna")
aln[:24]
but a ``SequenceCollection`` cannot be sliced
.. jupyter-execute::
:raises: TypeError
from cogent3 import load_unaligned_seqs
fn = "data/long_testseqs.fasta"
seqs = load_unaligned_seqs(fn)
seqs[:24]
Getting a single column from an alignment
"""""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
seq = load_aligned_seqs("data/test.paml")
column_four = aln[3]
Getting a region of contiguous columns
""""""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta")
region = aln[50:70]
Iterating over alignment positions
""""""""""""""""""""""""""""""""""
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/primate_cdx2_promoter.fasta")
col = aln[113:115].iter_positions()
type(col)
list(col)
Getting codon 3rd positions from ``Alignment``
""""""""""""""""""""""""""""""""""""""""""""""
We'll do this by specifying the position indices of interest, creating a sequence ``Feature`` and using that to extract the positions.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data={"seq1": "ATGATGATG---", "seq2": "ATGATGATGATG"}, array_align=False
)
list(range(len(aln))[2::3])
indices = [(i, i + 1) for i in range(len(aln))[2::3]]
indices
.. jupyter-execute::
pos3 = aln.add_feature(biotype="pos3", name="pos3", spans=indices)
pos3 = pos3.get_slice()
pos3
Getting codon 3rd positions from ``ArrayAlignment``
"""""""""""""""""""""""""""""""""""""""""""""""""""
We can use more conventional slice notation in this instance. Note, because Python counts from 0, the 3rd position starts at index 2.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data={"seq1": "ATGATGATG---", "seq2": "ATGATGATGATG"}, array_align=True
)
pos3 = aln[2::3]
pos3
.. _filter-positions:
Filtering positions
"""""""""""""""""""
Trim terminal stop codons
+++++++++++++++++++++++++
For evolutionary analyses that use codon models we need to exclude terminating stop codons. For the case where the sequences are all of length divisible by 3.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data={"seq1": "ACGTAA---", "seq2": "ACGACA---", "seq3": "ACGCAATGA"},
moltype="dna",
)
new = aln.trim_stop_codons()
new
To detect if the alignment contains sequences not divisible by 3, use the ``strict`` argument. This argument covers both allowing partial terminating codons / not divisible by 3.
.. jupyter-execute::
:raises:
aln = make_aligned_seqs(
data={
"seq1": "ACGTAA---",
"seq2": "ACGAC----", # terminal codon incomplete
"seq3": "ACGCAATGA",
},
moltype="dna",
)
new = aln.trim_stop_codons(strict=True)
Eliminating columns with non-nucleotide characters
++++++++++++++++++++++++++++++++++++++++++++++++++
We sometimes want to eliminate ambiguous or gap data from our alignments. We show how to exclude alignment columns by the characters they contain. In the first instance we do this just for single nucleotide columns, then for trinucleotides (equivalent for handling codons). Both are done using the ``no_degenerates`` method.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data=[
("seq1", "ATGAAGGTG---"),
("seq2", "ATGAAGGTGATG"),
("seq3", "ATGAAGGNGATG"),
],
moltype="dna",
)
We apply to nucleotides,
.. jupyter-execute::
nucs = aln.no_degenerates()
nucs
Applying the same filter to trinucleotides (specified by setting ``motif_length=3``).
.. jupyter-execute::
trinucs = aln.no_degenerates(motif_length=3)
trinucs
Getting all variable positions from an alignment
++++++++++++++++++++++++++++++++++++++++++++++++
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta")
pos = aln.variable_positions()
just_variable_aln = aln.take_positions(pos)
just_variable_aln[:10]
Getting all constant positions from an alignment
++++++++++++++++++++++++++++++++++++++++++++++++
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta")
pos = aln.variable_positions()
just_constant_aln = aln.take_positions(pos, negate=True)
just_constant_aln[:10]
Getting all variable codons from an alignment
+++++++++++++++++++++++++++++++++++++++++++++
This is done using the ``filtered`` method using the ``motif_length`` argument. We demonstrate this first for the ``ArrayAlignment``.
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta")
variable_codons = aln.filtered(
lambda x: len(set(map(tuple, x))) > 1, motif_length=3
)
just_variable_aln[:9]
Then for the standard ``Alignment`` by first converting the ``ArrayAlignment``.
.. jupyter-execute::
aln = aln.to_type(array_align=False)
variable_codons = aln.filtered(lambda x: len(set("".join(x))) > 1, motif_length=3)
just_variable_aln[:9]
Filtering sequences
"""""""""""""""""""
Extracting sequences by sequence identifier into a new alignment object
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
You can use ``take_seqs`` to extract some sequences by sequence identifier from an alignment to a new alignment object:
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta")
aln.take_seqs(["Human", "Mouse"])
Alternatively, you can extract only the sequences which are not specified by passing ``negate=True``:
.. jupyter-execute::
aln.take_seqs(["Human", "Mouse"], negate=True)
Extracting sequences using an arbitrary function into a new alignment object
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
You can use ``take_seqs_if`` to extract sequences into a new alignment object based on whether an arbitrary function applied to the sequence evaluates to True. For example, to extract sequences which don't contain any N bases you could do the following:
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data=[
("seq1", "ATGAAGGTG---"),
("seq2", "ATGAAGGTGATG"),
("seq3", "ATGAAGGNGATG"),
],
moltype="dna",
)
def no_N_chars(s):
return "N" not in s
aln.take_seqs_if(no_N_chars)
You can additionally get the sequences where the provided function evaluates to False:
.. jupyter-execute::
aln.take_seqs_if(no_N_chars, negate=True)
Computing alignment statistics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Getting motif counts
""""""""""""""""""""
We state the motif length we want and whether to allow gap or ambiguous characters. The latter only has meaning for IPUAC character sets (the DNA, RNA or PROTEIN moltypes). We illustrate this for the DNA moltype with motif lengths of 1 and 3.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data=[
("seq1", "ATGAAGGTG---"),
("seq2", "ATGAAGGTGATG"),
("seq3", "ATGAAGGNGATG"),
],
moltype="dna",
)
counts = aln.counts()
counts
.. jupyter-execute::
counts = aln.counts(motif_length=3)
counts
.. jupyter-execute::
counts = aln.counts(include_ambiguity=True)
counts
.. note::
Only the observed motifs are returned, rather than all defined by the alphabet.
Computing motif probabilities from an alignment
"""""""""""""""""""""""""""""""""""""""""""""""
The method ``get_motif_probs`` of ``Alignment`` objects returns the probabilities for all motifs of a given length. For individual nucleotides:
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/primate_cdx2_promoter.fasta", moltype="dna")
motif_probs = aln.get_motif_probs()
motif_probs
For dinucleotides or longer, we need to pass in an ``Alphabet`` with the appropriate word length. Here is an example with trinucleotides:
.. jupyter-execute::
from cogent3 import DNA, load_aligned_seqs
trinuc_alphabet = DNA.alphabet.get_word_alphabet(3)
aln = load_aligned_seqs("data/primate_cdx2_promoter.fasta", moltype="dna")
motif_probs = aln.get_motif_probs(alphabet=trinuc_alphabet)
for m in sorted(motif_probs, key=lambda x: motif_probs[x], reverse=True):
print("%s %.3f" % (m, motif_probs[m]))
The same holds for other arbitrary alphabets, as long as they match the alignment ``MolType``.
Some calculations in ``cogent3`` require all non-zero values in the motif probabilities, in which case we use a pseudo-count. We illustrate that here with a simple example where T is missing. Without the pseudo-count, the frequency of T is 0.0, with the pseudo-count defined as 1e-6 then the frequency of T will be slightly less than 1e-6.
.. jupyter-execute::
aln = make_aligned_seqs(data=[("a", "AACAAC"), ("b", "AAGAAG")], moltype="dna")
motif_probs = aln.get_motif_probs()
assert motif_probs["T"] == 0.0
motif_probs = aln.get_motif_probs(pseudocount=1e-6)
assert 0 < motif_probs["T"] <= 1e-6
It is important to notice that motif probabilities are computed by treating sequences as non-overlapping tuples. Below is a very simple pair of identical sequences where there are clearly 2 'AA' dinucleotides per sequence but only the first one is 'in-frame' (frame width = 2).
We then create a dinucleotide ``Alphabet`` object and use this to get dinucleotide probabilities. These frequencies are determined by breaking each aligned sequence up into non-overlapping dinucleotides and then doing a count. The expected value for the 'AA' dinucleotide in this case will be 2/8 = 0.25.
.. jupyter-execute::
seqs = [("a", "AACGTAAG"), ("b", "AACGTAAG")]
aln = make_aligned_seqs(data=seqs, moltype="dna")
dinuc_alphabet = DNA.alphabet.get_word_alphabet(2)
motif_probs = aln.get_motif_probs(alphabet=dinuc_alphabet)
assert motif_probs["AA"] == 0.25
What about counting the total incidence of dinucleotides including those not in-frame? A naive application of the Python string object's count method will not work as desired either because it "returns the number of non-overlapping occurrences".
.. jupyter-execute::
seqs = [("my_seq", "AAAGTAAG")]
aln = make_aligned_seqs(data=seqs, moltype="dna")
my_seq = aln.get_seq("my_seq")
my_seq.count("AA")
"AAA".count("AA")
"AAAA".count("AA")
To count all occurrences of a given dinucleotide in a DNA sequence, one could use a standard Python approach such as list comprehension:
.. jupyter-execute::
from cogent3 import make_seq
seq = make_seq(moltype="dna", seq="AAAGTAAG")
seq
di_nucs = [seq[i : i + 2] for i in range(len(seq) - 1)]
sum([nn == "AA" for nn in di_nucs])
Working with alignment gaps
"""""""""""""""""""""""""""
Filtering extracted columns for the gap character
+++++++++++++++++++++++++++++++++++++++++++++++++
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/primate_cdx2_promoter.fasta")
col = aln[113:115].iter_positions()
c1, c2 = list(col)
c1, c2
list(filter(lambda x: x == "-", c1))
list(filter(lambda x: x == "-", c2))
Calculating the gap fraction
++++++++++++++++++++++++++++
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/primate_cdx2_promoter.fasta")
for column in aln[113:150].iter_positions():
ungapped = list(filter(lambda x: x == "-", column))
gap_fraction = len(ungapped) * 1.0 / len(column)
print(gap_fraction)
Extracting maps of aligned to unaligned positions (i.e., gap maps)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
It's often important to know how an alignment position relates to a position in one or more of the sequences in the alignment. The ``gap_maps`` method of the individual sequences is useful for this. To get a map of sequence to alignment positions for a specific sequence in your alignment, do the following:
.. jupyter-execute::
from cogent3 import make_aligned_seqs
aln = make_aligned_seqs(
data=[
("seq1", "ATGAAGG-TG--"),
("seq2", "ATG-AGGTGATG"),
("seq3", "ATGAAG--GATG"),
],
moltype="dna",
)
seq_to_aln_map = aln.get_gapped_seq("seq1").gap_maps()[0]
It's now possible to look up positions in the ``seq1``, and find out what they map to in the alignment:
.. jupyter-execute::
seq_to_aln_map[3]
seq_to_aln_map[8]
This tells us that in position 3 in ``seq1`` corresponds to position 3 in ``aln``, and that position 8 in ``seq1`` corresponds to position 9 in ``aln``.
Notice that we grabbed the first result from the call to ``gap_maps``. This is the sequence position to alignment position map. The second value returned is the alignment position to sequence position map, so if you want to find out what sequence positions the alignment positions correspond to (opposed to what alignment positions the sequence positions correspond to) for a given sequence, you would take the following steps:
.. jupyter-execute::
aln_to_seq_map = aln.get_gapped_seq("seq1").gap_maps()[1]
aln_to_seq_map[3]
aln_to_seq_map[8]
If an alignment position is a gap, and therefore has no corresponding sequence position, you'll get a ``KeyError``.
.. jupyter-execute::
:raises: KeyError
seq_pos = aln_to_seq_map[7]
.. note:: The first position in alignments and sequences is always numbered position 0.
Filtering alignments based on gaps
++++++++++++++++++++++++++++++++++
.. note:: An alternate, computationally faster, approach to removing gaps is to use the ``filtered`` method as discussed in :ref:`filter-positions`.
The ``omit_gap_runs`` method can be applied to remove long stretches of gaps in an alignment. In the following example, we remove sequences that have more than two adjacent gaps anywhere in the aligned sequence.
.. jupyter-execute::
aln = make_aligned_seqs(
data=[
("seq1", "ATGAA---TG-"),
("seq2", "ATG-AGTGATG"),
("seq3", "AT--AG-GATG"),
],
moltype="dna",
)
aln.omit_gap_runs(2)
If instead, we just wanted to remove positions from the alignment which are gaps in more than a certain percentage of the sequences, we could use the ``omit_gap_pos`` function. For example:
.. jupyter-execute::
aln = make_aligned_seqs(
data=[
("seq1", "ATGAA---TG-"),
("seq2", "ATG-AGTGATG"),
("seq3", "AT--AG-GATG"),
],
moltype="dna",
)
aln.omit_gap_pos(0.40)
If you wanted to remove sequences which contain more than a certain percent gap characters, you could use the ``omit_gap_seqs`` method. This is commonly applied to filter partial sequences from an alignment.
.. jupyter-execute::
aln = make_aligned_seqs(
data=[
("seq1", "ATGAA------"),
("seq2", "ATG-AGTGATG"),
("seq3", "AT--AG-GATG"),
],
moltype="dna",
)
filtered_aln = aln.omit_gap_seqs(0.50)
filtered_aln
Note that following this call to ``omit_gap_seqs``, the 4th column of ``filtered_aln`` is 100% gaps. This is generally not desirable, so a call to ``omit_gap_seqs`` is frequently followed with a call to ``omit_gap_pos`` with no parameters -- this defaults to removing positions which are all gaps:
.. jupyter-execute::
filtered_aln.omit_gap_pos()
|