File: genetic_code.rst

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (190 lines) | stat: -rw-r--r-- 4,305 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
.. _genetic-codes:

Using genetic codes
^^^^^^^^^^^^^^^^^^^

Selecting codes in methods that support them
""""""""""""""""""""""""""""""""""""""""""""

In cases where a ``cogent3`` object method has a ``gc`` argument, you can just use the number under "Code ID" column.

For example, I've created a partial codon in ``"s1"``

.. jupyter-execute::

    from cogent3 import make_aligned_seqs

    data = {
        "s1": "GCTCATGCCAGCTCTTTACAGCATGAGAACA--AGT",
        "s2": "ACTCATGCCAACTCATTACAGCATGAGAACAGCAGT",
        "s3": "ACTCATGCCAGCTCATTACAGCATGAGAACAGCAGT",
        "s4": "ACTCATGCCAGCTCATTACAGCATGAGAACAGCAGT",
        "s5": "ACTCATGCCAGCTCAGTACAGCATGAGAACAGCAGT",
    }

    nt_seqs = make_aligned_seqs(data=data, moltype="dna")
    nt_seqs

We specify the genetic code, and we allow incomplete codons. In this case, if a codon contains a gap, they are converted to ``?`` in the translation.

.. jupyter-execute::

    nt_seqs.get_translation(gc=1, incomplete_ok=True)


Translate DNA sequences
"""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code

    standard_code = get_code(1)
    standard_code.translate("TTTGCAAAC")

Conversion to a ``ProteinSequence`` from a ``DnaSequence`` is shown in :ref:`translation`.

Translate all six frames
""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code, make_seq

    standard_code = get_code(1)
    seq = make_seq("ATGCTAACATAAA", moltype="dna")
    translations = standard_code.sixframes(seq)
    print(translations)

Find out how many stops in a frame
""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code, make_seq

    standard_code = get_code(1)
    seq = make_seq("ATGCTAACATAAA", moltype="dna")
    stops_frame1 = standard_code.get_stop_indices(seq, start=0)
    stops_frame1

.. jupyter-execute::

    stop_index = stops_frame1[0]
    seq[stop_index : stop_index + 3]

Translate a codon
"""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code, make_seq

    standard_code = get_code(1)
    standard_code["TTT"]

or get the codons for a single amino acid

.. jupyter-execute::

    standard_code["A"]

Look up the amino acid corresponding to a single codon
""""""""""""""""""""""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code

    standard_code = get_code(1)
    standard_code["TTT"]

Get all the codons for one amino acid
"""""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code

    standard_code = get_code(1)
    standard_code["A"]

Get all the codons for a group of amino acids
"""""""""""""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    targets = ["A", "C"]
    codons = [standard_code[aa] for aa in targets]
    codons

.. jupyter-execute::

    flat_list = sum(codons, [])
    flat_list

Converting the ``CodonAlphabet`` to codon series
""""""""""""""""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import get_code

    gc = get_code(1)
    alphabet = gc.get_alphabet()
    print(alphabet)

Obtaining the codons from a ``DnaSequence`` object
""""""""""""""""""""""""""""""""""""""""""""""""""

Use the method ``get_in_motif_size``

.. jupyter-execute::

    from cogent3 import make_seq

    my_seq = make_seq("ATGCACTGGTAA", name="my_gene", moltype="dna")
    codons = my_seq.get_in_motif_size(3)
    codons

Translating a DNA sequence
""""""""""""""""""""""""""

The defaults for ``get_translation()`` include using the standard genetic code and trimming a terminating stop if it exists.

.. jupyter-execute::

    pep = my_seq.get_translation()
    pep

Translating a DNA sequence containing stop codons
"""""""""""""""""""""""""""""""""""""""""""""""""

.. jupyter-execute::
    :hide-code:

    from cogent3.core.alphabet import AlphabetError

Making a sequence that contains both internal and terminating stop codons.

.. jupyter-execute::
    :raises:

    from cogent3 import make_seq

    seq = make_seq("ATGTGATGGTAA", name="s1", moltype="dna")

Translating this will fail with default settings.

.. jupyter-execute::
    :raises: AlphabetError

    pep = seq.get_translation()

Unless you explicitly allow stop codons

.. jupyter-execute::

    pep = seq.get_translation(include_stop=True)
    pep