1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
.. jupyter-execute::
:hide-code:
import set_working_directory
.. _load_seq:
Loading a sequence from a file
------------------------------
It's also possible to load a sequence from a :ref:`url <load_url>`.
.. jupyter-execute::
from cogent3 import load_seq
seq = load_seq("data/mycoplasma-genitalium.fa", moltype="dna")
seq
.. warning:: If a file has more than one sequence, only the first one is loaded.
.. jupyter-execute::
seq = load_seq("data/brca1-bats.fasta", moltype="dna")
seq
.. note:: The filename suffix is used to infer the data format.
.. _load-seqs:
Loading an alignment from a file or url
---------------------------------------
.. author, Gavin Huttley, Tony Walters, Tom Elliott
Loading aligned sequences
^^^^^^^^^^^^^^^^^^^^^^^^^
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta", moltype="dna")
type(aln)
The load functions record the origin of the data in the ``info`` attribute under a `"source"` key.
.. jupyter-execute::
aln.info.source
.. note:: The function ``load_aligned_seqs()`` returns an ``ArrayAlignment`` by default. If you set the argument ``array_align=False``, you will get an ``Alignment``. (That class can be annotated.)
.. todo:: add cross ref for description of Info class
Loading unaligned sequences
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``load_unaligned_seqs()`` function returns a sequence collection.
.. jupyter-execute::
from cogent3 import load_unaligned_seqs
seqs = load_unaligned_seqs("data/long_testseqs.fasta", moltype="dna")
type(seqs)
.. _load_url:
Loading from a url
^^^^^^^^^^^^^^^^^^
The ``cogent3`` load functions support loading from a url. We load the above fasta file directly from GitHub.
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs(
"https://raw.githubusercontent.com/cogent3/cogent3/develop/doc/data/long_testseqs.fasta",
moltype="dna",
)
Specifying the file format
^^^^^^^^^^^^^^^^^^^^^^^^^^
The loading functions use the filename suffix to infer the file format. This can be overridden using the ``format`` argument.
.. jupyter-execute::
from cogent3 import load_aligned_seqs
aln = load_aligned_seqs("data/long_testseqs.fasta", moltype="dna", format="fasta")
aln
Specifying the sequence molecular type
--------------------------------------
Simple case of loading a ``list`` of aligned amino acid sequences in FASTA format, with and without ``moltype`` specification. When ``moltype`` is not specified it defaults to ``BYTES`` for the ``ArrayAlignment`` class, ``ASCII`` for the ``Alignment`` class.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
protein_seqs = {"seq1": "DEKQL-RG", "seq2": "DDK--SRG"}
proteins_loaded = make_aligned_seqs(protein_seqs)
proteins_loaded.moltype
proteins_loaded
.. jupyter-execute::
proteins_loaded = make_aligned_seqs(protein_seqs, moltype="protein")
proteins_loaded
.. note:: This applies to both the ``load_*`` or ``make_*`` functions.
Making an alignment from standard python objects
------------------------------------------------
From a dict of strings
^^^^^^^^^^^^^^^^^^^^^^
.. jupyter-execute::
from cogent3 import make_aligned_seqs
seqs = {"seq1": "AATCG-A", "seq2": "AATCGGA"}
seqs_loaded = make_aligned_seqs(seqs)
From a series of strings
^^^^^^^^^^^^^^^^^^^^^^^^
.. jupyter-execute::
from cogent3 import make_aligned_seqs
seqs = {"seq1": "AATCG-A", "seq2": "AATCGGA"}
seqs_loaded = make_aligned_seqs(seqs)
seqs_loaded
Stripping label characters on loading
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Load a list of aligned nucleotide sequences, while specifying the DNA molecule type and stripping the comments from the label. In this example, stripping is accomplished by passing a function that removes everything after the first whitespace to the ``label_to_name`` parameter.
.. jupyter-execute::
from cogent3 import make_aligned_seqs
DNA_seqs = {
"sample1 Mus musculus": "AACCTGC--C",
"sample2 Gallus gallus": "AAC-TGCAAC",
}
loaded_seqs = make_aligned_seqs(
DNA_seqs, moltype="dna", label_to_name=lambda x: x.split()[0]
)
loaded_seqs
Making a sequence collection from standard python objects
---------------------------------------------------------
This is done using ``make_unaligned_seqs()``, which returns a ``SequenceCollection`` instance. The function arguments match those of ``make_aligned_seqs()``. We demonstrate only for the case where the input data is a ``dict``.
.. jupyter-execute::
from cogent3 import make_unaligned_seqs
seqs = {"seq1": "AATCA", "seq2": "AATCGGA"}
seqs = make_unaligned_seqs(data=seqs, moltype="dna")
seqs
Loading sequences using format parsers
--------------------------------------
``load_aligned_seqs()`` and ``load_unaligned_seqs()`` are just convenience interfaces to format parsers. It can sometimes be more effective to use the parsers directly, say when you don't want to load everything into memory.
Loading FASTA sequences from an open file or list of lines
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To load FASTA formatted sequences directly, you can use the ``MinimalFastaParser``.
.. note:: This returns the sequences as strings.
.. jupyter-execute::
from cogent3.parse.fasta import MinimalFastaParser
f = open("data/long_testseqs.fasta")
seqs = [(name, seq) for name, seq in MinimalFastaParser(f)]
seqs
Handling overloaded FASTA sequence labels
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The FASTA label field is frequently overloaded, with different information fields present in the field and separated by some delimiter. This can be flexibly addressed using the ``LabelParser``. By creating a custom label parser, we can decide which part we use as the sequence name. We show how to convert a field into something specific.
.. jupyter-execute::
from cogent3.parse.fasta import LabelParser
def latin_to_common(latin):
return {"Homo sapiens": "human", "Pan troglodtyes": "chimp"}[latin]
label_parser = LabelParser(
"%(species)s", [[1, "species", latin_to_common]], split_with=":"
)
for label in ">abcd:Homo sapiens:misc", ">abcd:Pan troglodtyes:misc":
label = label_parser(label)
print(label, type(label))
``RichLabel`` objects have an ``Info`` object as an attribute, allowing specific reference to all the specified label fields.
.. jupyter-execute::
from cogent3.parse.fasta import LabelParser, MinimalFastaParser
fasta_data = [
">gi|10047090|ref|NP_055147.1| small muscle protein, X-linked [Homo sapiens]",
"MNMSKQPVSNVRAIQANINIPMGAFRPGAGQPPRRKECTPEVEEGVPPTSDEEKKPIPGAKKLPGPAVNL",
"SEIQNIKSELKYVPKAEQ",
">gi|10047092|ref|NP_037391.1| neuronal protein [Homo sapiens]",
"MANRGPSYGLSREVQEKIEQKYDADLENKLVDWIILQCAEDIEHPPPGRAHFQKWLMDGTVLCKLINSLY",
"PPGQEPIPKISESKMAFKQMEQISQFLKAAETYGVRTTDIFQTVDLWEGKDMAAVQRTLMALGSVAVTKD",
]
label_to_name = LabelParser(
"%(ref)s",
[[1, "gi", str], [3, "ref", str], [4, "description", str]],
split_with="|",
)
for name, seq in MinimalFastaParser(fasta_data, label_to_name=label_to_name):
print(name)
print(name.info.gi)
print(name.info.description)
|