File: simple_trees.rst

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (560 lines) | stat: -rw-r--r-- 12,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
.. jupyter-execute::
    :hide-code:

    import set_working_directory

Trees
-----

.. authors, Gavin Huttley, Tom Elliott

Loading a tree from a file and visualizing it with ``ascii_art()``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    print(tr.ascii_art())

Writing a tree to a file
^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    tr.write("data/temp.tree")

Getting the individual nodes of a tree by name
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    names = tr.get_node_names()
    names[:4]

.. jupyter-execute::

    names[4:]
    names_nodes = tr.get_nodes_dict()
    names_nodes["Human"]

.. jupyter-execute::

    tr.get_node_matching_name("Mouse")

Getting the name of a node (or a tree)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    hu = tr.get_node_matching_name("Human")
    tr.name

.. jupyter-execute::

    hu.name

The object type of a tree and its nodes is the same
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    nodes = tr.get_nodes_dict()
    hu = nodes["Human"]
    type(hu)

.. jupyter-execute::

    type(tr)

Working with the nodes of a tree
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Get all the nodes, tips and edges

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    nodes = tr.get_nodes_dict()
    for n in nodes.items():
        print(n)

only the terminal nodes (tips)

.. jupyter-execute::

    for n in tr.iter_tips():
        print(n)

for internal nodes (edges) we can use Newick format to simplify the output

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    for n in tr.iter_nontips():
        print(n.get_newick())

Getting the path between two tips or edges (connecting edges)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    edges = tr.get_connecting_edges("edge.1", "Human")
    for edge in edges:
        print(edge.name)

Getting the distance between two nodes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    nodes = tr.get_nodes_dict()
    hu = nodes["Human"]
    mu = nodes["Mouse"]
    hu.distance(mu)
    hu.is_tip()

Getting the last common ancestor (LCA) for two nodes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    nodes = tr.get_nodes_dict()
    hu = nodes["Human"]
    mu = nodes["Mouse"]
    lca = hu.last_common_ancestor(mu)
    lca

.. jupyter-execute::

    type(lca)

Getting all the ancestors for a node
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    hu = tr.get_node_matching_name("Human")
    for a in hu.ancestors():
        print(a.name)

Getting all the children for a node
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    node = tr.get_node_matching_name("edge.1")
    children = list(node.iter_tips()) + list(node.iter_nontips())
    for child in children:
        print(child.name)

Getting all the distances for a tree
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    dists = tr.get_distances()

We also show how to select a subset of distances involving just one species.

.. jupyter-execute::

    human_dists = [names for names in dists if "Human" in names]
    for dist in human_dists:
        print(dist, dists[dist])

Getting the two nodes that are farthest apart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    tr.max_tip_tip_distance()

Get the nodes within a given distance
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    hu = tr.get_node_matching_name("Human")
    tips = hu.tips_within_distance(0.2)
    for t in tips:
        print(t)

Rerooting trees
^^^^^^^^^^^^^^^

At a named node
"""""""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    print(tr.rooted_at("edge.0").ascii_art())

At the midpoint
"""""""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    print(tr.root_at_midpoint().ascii_art())

.. jupyter-execute::

    print(tr.ascii_art())

Near a given tip
""""""""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    print(tr.ascii_art())

.. jupyter-execute::

    print(tr.rooted_with_tip("Mouse").ascii_art())

Tree representations
^^^^^^^^^^^^^^^^^^^^

Newick format
"""""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    tr.get_newick()

.. jupyter-execute::

    tr.get_newick(with_distances=True)

XML format
""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    xml = tr.get_xml()
    for line in xml.splitlines():
        print(line)

Tree traversal
^^^^^^^^^^^^^^

Here is the example tree for reference:

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    print(tr.ascii_art())

Preorder
""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    for t in tr.preorder():
        print(t.get_newick())

Postorder
"""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    for t in tr.postorder():
        print(t.get_newick())

Selecting subtrees
^^^^^^^^^^^^^^^^^^

One way to do it
""""""""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    for tip in tr.iter_nontips():
        tip_names = tip.get_tip_names()
        print(tip_names)
        sub_tree = tr.get_sub_tree(tip_names)
        print(sub_tree.ascii_art())

..
    We do some file clean up

.. jupyter-execute::
    :hide-code:

    from cogent3.util.io import remove_files

    remove_files(["data/temp.tree", "data/temp.pdf"], error_on_missing=False)

Tree manipulation methods
^^^^^^^^^^^^^^^^^^^^^^^^^

Pruning the tree
""""""""""""""""

Remove internal nodes with only one child. Create new connections
and branch lengths (if tree is a PhyloNode) to reflect the change.

.. jupyter-execute::

    from cogent3 import make_tree

    simple_tree_string = "(B:0.2,(D:0.4)E:0.5)F;"
    simple_tree = make_tree(simple_tree_string)
    print(simple_tree.ascii_art())

.. jupyter-execute::

    simple_tree.prune()
    print(simple_tree.ascii_art())

.. jupyter-execute::

    print(simple_tree)

Create a full unrooted copy of the tree
"""""""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import load_tree

    tr1 = load_tree("data/test.tree")
    print(tr1.get_newick())

.. jupyter-execute::

    tr2 = tr1.unrooted_deepcopy()
    print(tr2.get_newick())

Transform tree into a bifurcating tree
""""""""""""""""""""""""""""""""""""""

Add internal nodes so that every node has 2 or fewer children.

.. jupyter-execute::

    from cogent3 import make_tree

    tree_string = "(B:0.2,H:0.2,(C:0.3,D:0.4,E:0.1)F:0.5)G;"
    tr = make_tree(tree_string)
    print(tr.ascii_art())

.. jupyter-execute::

    print(tr.bifurcating().ascii_art())

Transform tree into a balanced tree
"""""""""""""""""""""""""""""""""""

Using a balanced tree can substantially improve performance of
likelihood calculations. Note that the resulting tree has a
different orientation with the effect that specifying clades or
stems for model parameterisation should be done using the
"outgroup_name" argument.

.. jupyter-execute::

    from cogent3 import load_tree

    tr = load_tree("data/test.tree")
    print(tr.ascii_art())

.. jupyter-execute::

    print(tr.balanced().ascii_art())

Test two trees for same topology
""""""""""""""""""""""""""""""""

Branch lengths don't matter.

.. jupyter-execute::

    from cogent3 import make_tree

    tr1 = make_tree("(B:0.2,(C:0.2,D:0.2)F:0.2)G;")
    tr2 = make_tree("((C:0.1,D:0.1)F:0.1,B:0.1)G;")
    tr1.same_topology(tr2)

Measure topological distances between two trees
"""""""""""""""""""""""""""""""""""""""""""""""

A number of topological tree distance metrics are available. They include:

* The Robinson-Foulds Distance for rooted trees.
* The Matching Cluster Distance for rooted trees.
* The Robinson-Foulds Distance for unrooted trees.
* The Lin-Rajan-Moret Distance for unrooted trees.

There are several variations of the Robinson-Foulds metric in the literature. The definition used by ``cogent3`` is the
cardinality of the symmetric difference of the sets of clades/splits in the two rooted/unrooted trees. Other definitions sometimes
divide this by two, or normalise it to the unit interval. 

The Robinson-Foulds distance is quick to compute, but is known to saturate quickly. Moving a single leaf in a tree can maximise this metric.

The Matching Cluster and Lin-Rajan-Moret are two matching-based distances that are more statistically robust. 
Unlike the Robinson-Foulds distance which counts how many of the splits/clades are not exactly same, the matching-based distances
measures the degree by which the splits/clades are different. The matching-based distances solve a min-weight matching problem,
which for large trees may take longer to compute.

.. jupyter-execute::

    # Distance metrics for rooted trees
    from cogent3 import make_tree

    tr1 = make_tree(treestring="(a,(b,(c,(d,e))));")
    tr2 = make_tree(treestring="(e,(d,(c,(b,a))));")
    
    mc_distance = tr1.tree_distance(tr2, method="matching_cluster") # or method="mc" or method="matching"
    rooted_rf_distance = tr1.tree_distance(tr2, method="rooted_robinson_foulds") # or method="rrf" or method="rf"

    print("Matching Cluster Distance:", mc_distance)
    print("Rooted Robinson Foulds Distance:", rooted_rf_distance)

.. jupyter-execute::

    # Distance metrics for unrooted trees
    from cogent3 import make_tree
    
    tr1 = make_tree(treestring="(a,b,(c,(d,e)));")
    tr2 = make_tree(treestring="((a,c),(b,d),e);")
    
    lrm_distance = tr1.tree_distance(tr2, method="lin_rajan_moret") # or method="lrm" or method="matching"
    unrooted_rf_distance = tr1.tree_distance(tr2, method="unrooted_robinson_foulds") # or method="urf" or method="rf"
    
    print("Lin-Rajan-Moret Distance:", lrm_distance)
    print("Unrooted Robinson Foulds Distance:", unrooted_rf_distance)

Calculate each node's maximum distance to a tip
"""""""""""""""""""""""""""""""""""""""""""""""

Sets each node's "TipDistance" attribute to be
the distance from that node to its most distant tip.

.. jupyter-execute::

    from cogent3 import make_tree

    tr = make_tree("(B:0.2,(C:0.3,D:0.4)F:0.5)G;")
    print(tr.ascii_art())

.. jupyter-execute::

    tr.set_tip_distances()
    for t in tr.preorder():
        print(t.name, t.TipDistance)

Scale branch lengths in place to integers for ascii output
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

.. jupyter-execute::

    from cogent3 import make_tree

    tr = make_tree("(B:0.2,(C:0.3,D:0.4)F:0.5)G;")
    print(tr)

.. jupyter-execute::

    tr.scale_branch_lengths()
    print(tr)

Get tip-to-tip distances
""""""""""""""""""""""""
Get a distance matrix between all pairs of tips
and a list of the tip nodes.

.. jupyter-execute::

    from cogent3 import make_tree

    tr = make_tree("(B:3,(C:2,D:4)F:5)G;")
    d, tips = tr.tip_to_tip_distances()
    for i, t in enumerate(tips):
        print(t.name, d[i])

Compare two trees using tip-to-tip distance matrices
""""""""""""""""""""""""""""""""""""""""""""""""""""

Score ranges from 0 (minimum distance) to 1 (maximum
distance). The default is to use Pearson's correlation,
in which case a score of 0 means that the Pearson's
correlation was perfectly good (1), and a score of 1
means that the Pearson's correlation was perfectly bad (-1).

Note: automatically strips out the names that don't match.

.. jupyter-execute::

    from cogent3 import make_tree

    tr1 = make_tree("(B:2,(C:3,D:4)F:5)G;")
    tr2 = make_tree("(C:2,(B:3,D:4)F:5)G;")
    tr1.compare_by_tip_distances(tr2)