File: tables.rst

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (822 lines) | stat: -rw-r--r-- 19,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
.. jupyter-execute::
    :hide-code:

    import set_working_directory

************
Tabular data
************

.. authors, Gavin Huttley, Kristian Rother, Patrick Yannul

``Table`` handles tabular data, storing as columns in a, you guessed it, ``columns`` attribute. The latter acts like a dictionary, with the column names as the keys and the column values being  ``numpy.ndarray`` instances. The table itself is iterable over rows.

.. note:: ``Table`` is immutable at the level of the individual ``ndarray`` not being writable.

.. include:: ./loading_tabular.rst

Adding a new column
===================

.. jupyter-execute::

    from cogent3 import make_table

    table = make_table()
    table.columns["a"] = [1, 3, 5]
    table.columns["b"] = [2, 4, 6]
    table

Add a title and a legend to a table
===================================

This can be done when you create the table.

.. jupyter-execute::

    from cogent3 import make_table

    data = dict(a=[0, 3], b=["a", "c"])
    table = make_table(data=data, title="Sample title", legend="a legend")
    table

It can be done by directly assigning to the corresponding attributes.

.. jupyter-execute::

    data = dict(a=[0, 3], b=["a", "c"])
    table = make_table(data=data)
    table.title = "My title"
    table

Iterating over table rows
=========================

``Table`` is a row oriented object. Iterating on the table returns each row as a new ``Table`` instance.

.. jupyter-execute::

    from cogent3 import load_table

    table = load_table("data/stats.tsv")
    for row in table:
        print(row)
        break

The resulting rows can be indexed using their column names.

.. jupyter-execute::

    for row in table:
        print(row["Locus"])

How many rows are there?
========================

The ``Table.shape`` attribute is like that of a ``numpy`` ``array``. The first element (``Table.shape[0]``) is the number of rows.

.. jupyter-execute::

    from cogent3 import make_table

    data = dict(a=[0, 3, 5], b=["a", "c", "d"])
    table = make_table(data=data)
    table.shape[0] == 3

How many columns are there?
===========================

``Table.shape[1]`` is the number of columns. Using the table from above.

.. jupyter-execute::

    table.shape[1] == 2

Iterating over table columns
============================

The ``Table.columns`` attribute is a ``Columns`` instance, an object with ``dict`` attributes.

.. jupyter-execute::

    from cogent3 import load_table

    table = load_table("data/stats.tsv")
    table.columns

.. jupyter-execute::

    table.columns["Region"]

So iteration is the same as for dicts.

.. jupyter-execute::

    for name in table.columns:
        print(name)

Table slicing using column names
================================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table

Slice using the column name.

.. jupyter-execute::

    table[:2, "Region":]

Table slicing using indices
===========================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table[:2, :1]

Changing displayed numerical precision
======================================

We change the ``Ratio`` column to using scientific notation.

.. jupyter-execute::

    from cogent3 import load_table

    table = load_table("data/stats.tsv")
    table.format_column("Ratio", "%.1e")
    table

Change digits or column spacing
===============================

This can be done on table loading,

.. jupyter-execute::

    table = load_table("data/stats.tsv", digits=1, space=2)
    table

or, for spacing at least, by modifying the attributes

.. jupyter-execute::

    table.space = "    "
    table

Wrapping tables for display
===========================

Wrapping generates neat looking tables whether or not you index the table rows. We demonstrate here

.. jupyter-execute::

    from cogent3 import make_table

    h = ["name", "A/C", "A/G", "A/T", "C/A"]
    rows = [["tardigrade", 0.0425, 0.1424, 0.0226, 0.0391]]
    wrap_table = make_table(header=h, data=rows, max_width=30)
    wrap_table

.. jupyter-execute::

    wrap_table = make_table(header=h, data=rows, max_width=30, index_name="name")
    wrap_table

Display the top of a table using ``head()``
===========================================

.. jupyter-execute::

    table = make_table(data=dict(a=list(range(10)), b=list(range(10))))
    table.head()

You change how many rows are displayed.

.. jupyter-execute::

    table.head(2)

The table shape is that of the original table.

Display the bottom of a table using ``tail()``
==============================================

.. jupyter-execute::

    table.tail()

You change how many rows are displayed.

.. jupyter-execute::

    table.tail(1)

Display random rows from a table
================================

.. jupyter-execute::

    table.set_repr_policy(random=3)
    table

Change the number of rows displayed by ``repr()``
=================================================

.. jupyter-execute::

    table.set_repr_policy(head=2, tail=3)
    table

.. note:: The ``...`` indicates the break between the top and bottom rows.

Changing column headings
========================

The table ``header`` is immutable. Changing column headings is done as follows.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    print(table.header)
    table = table.with_new_header("Ratio", "Stat")
    print(table.header)

Adding a new column
===================

.. jupyter-execute::

    from cogent3 import make_table

    table = make_table()
    table

.. jupyter-execute::

    table.columns["a"] = [1, 3, 5]
    table.columns["b"] = [2, 4, 6]
    table

Create a new column from existing ones
======================================

This can be used to take a single, or multiple columns and generate a new column of values. Here we'll take 2 columns and return True/False based on a condition.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table = table.with_new_column(
        "LargeCon",
        lambda r_v: r_v[0] == "Con" and r_v[1] > 10.0,
        columns=["Region", "Ratio"],
    )
    table

Get table data as a numpy array
===============================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table.array

Get a table column as a list
============================

Via the ``Table.to_list()`` method.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    locus = table.to_list("Locus")
    locus

Or directly from the column array object.

.. jupyter-execute::

    table.columns["Locus"].tolist()

.. note:: ``table.columns["Locus"]`` is a ``numpy.ndarray``, hence the different method call.

Get multiple table columns as a list
====================================

This returns a row oriented list.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    rows = table.to_list(["Region", "Locus"])
    rows

.. note:: column name order dictates the element order per row

Get the table as a row oriented ``dict``
========================================

Keys in the resulting dict are the row indices, the value is a dict of column name, value pairs.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table.to_dict()

Get the table as a column oriented ``dict``
===========================================

Keys in the resulting dict are the column names, the value is a list.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table.columns.to_dict()

Get the table as a ``pandas.DataFrame``
=======================================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    df = table.to_pandas()
    df

You can also specify column(s) are categories

.. jupyter-execute::

    df = table.to_pandas(categories="Region")

Get a table of counts as a contingency table
============================================

If our table consists of counts data, the ``Table`` can convert it into a ``CategoryCount`` instance that can be used for performing basic contingency table statistical tests, e.g. chisquare, G-test of independence, etc.. To do this, we must specify which column contains the row names using the ``index_name`` argument.

.. jupyter-execute::

    table = make_table(data={"Ts": [31, 58], "Tv": [36, 138], "": ["syn", "nsyn"]}, index_name="")
    table

.. jupyter-execute::

    contingency = table.to_categorical(["Ts", "Tv"])
    contingency

.. jupyter-execute::

    g_test = contingency.G_independence()
    g_test

Alternatively, you could also specify the ``index_name`` of the category column as

.. jupyter-execute::
    
    table = make_table(data={"Ts": [31, 58], "Tv": [36, 138], "": ["syn", "nsyn"]})
    contingency = table.to_categorical(["Ts", "Tv"], index_name="")

Appending tables
================

.. warning:: Only for tables with the same columns.

Can be done without specifying a new column (set the first argument to ``appended`` to be ``None``). Here we simply use the same table data.

.. jupyter-execute::

    table1 = load_table("data/stats.tsv")
    table2 = load_table("data/stats.tsv")
    table = table1.appended(None, table2)
    table

Specifying with a new column. In this case, the value of the ``table.title`` becomes the value for the new column.

.. jupyter-execute::

    table1.title = "Data1"
    table2.title = "Data2"
    table = table1.appended("Data#", table2, title="")
    table

.. note:: We assigned an empty string to ``title``, otherwise the resulting table has the same ``title`` attribute as that of ``table1``.

Summing a single column
=======================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table.summed("Ratio")

Because each column is just a ``numpy.ndarray``, this also can be done directly via the array methods.

.. jupyter-execute::

    table.columns["Ratio"].sum()

Summing multiple columns or rows - strictly numerical data
==========================================================

We define a strictly numerical table,

.. jupyter-execute::

    from cogent3 import make_table

    all_numeric = make_table(
        header=["A", "B", "C"], data=[range(3), range(3, 6), range(6, 9), range(9, 12)]
    )
    all_numeric

and sum all columns (default condition)

.. jupyter-execute::

    all_numeric.summed()

and all rows

.. jupyter-execute::

    all_numeric.summed(col_sum=False)

Summing multiple columns or rows with mixed non-numeric/numeric data
====================================================================

We define a table with mixed data, like a distance matrix.

.. jupyter-execute::

    mixed = make_table(
        header=["A", "B", "C"], data=[["*", 1, 2], [3, "*", 5], [6, 7, "*"]]
    )
    mixed

and sum all columns (default condition), ignoring non-numerical data

.. jupyter-execute::

    mixed.summed(strict=False)

and all rows

.. jupyter-execute::

    mixed.summed(col_sum=False, strict=False)

Filtering table rows
====================

We can do this by providing a reference to an external function

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    sub_table = table.filtered(lambda x: x < 10.0, columns="Ratio")
    sub_table

or using valid python syntax within a string, which is executed

.. jupyter-execute::

    sub_table = table.filtered("Ratio < 10.0")
    sub_table

You can also filter for values in multiple columns

.. jupyter-execute::

    sub_table = table.filtered("Ratio < 10.0 and Region == 'NonCon'")
    sub_table

Filtering table columns
=======================

We select only columns that have a sum > 20 from the ``all_numeric`` table constructed above.

.. jupyter-execute::

    big_numeric = all_numeric.filtered_by_column(lambda x: sum(x) > 20)
    big_numeric

Standard sorting
================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table.sorted(columns="Ratio")

Reverse sorting
===============

.. jupyter-execute::

    table.sorted(columns="Ratio", reverse="Ratio")

Sorting involving multiple columns, one reversed
================================================

.. jupyter-execute::

    table.sorted(columns=["Region", "Ratio"], reverse="Ratio")

Getting raw data for a single column
====================================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    raw = table.to_list("Region")
    raw

Getting raw data for multiple columns
=====================================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    raw = table.to_list(["Locus", "Region"])
    raw

Getting distinct values
=======================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    assert table.distinct_values("Region") == set(["NonCon", "Con"])

Counting occurrences of values
==============================

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    assert table.count("Region == 'NonCon' and Ratio > 1") == 1

Counting unique values
======================

This returns a ``CategoryCounter``, a dict like class.

.. jupyter-execute::

    from cogent3 import make_table

    table = make_table(
        data=dict(A=["a", "b", "b", "b", "a"], B=["c", "c", "c", "c", "d"])
    )
    unique = table.count_unique("A")
    type(unique)

.. jupyter-execute::

    unique

For multiple columns.

.. jupyter-execute::

    unique = table.count_unique(["A", "B"])
    unique

.. jupyter-execute::

    r = unique.to_table()
    r

Joining or merging tables
=========================

We do a standard inner join here for a restricted subset. We must specify the columns that will be used for the join. Here we just use ``Locus``.

.. jupyter-execute::

    rows = [
        ["NP_004893", True],
        ["NP_005079", True],
        ["NP_005500", False],
        ["NP_055852", False],
    ]
    region_type = make_table(header=["Locus", "LargeCon"], data=rows)
    stats_table = load_table("data/stats.tsv")
    new = stats_table.joined(region_type, columns_self="Locus")
    new

.. note:: If the tables have titles, column names are prefixed with those instead of ``right_``.

.. note:: The ``joined()`` method is just a wrapper for the ``inner_join()`` and ``cross_join()`` (row cartesian product) methods, which you can use directly.

Transpose a table
=================

.. jupyter-execute::

    from cogent3 import make_table

    header = ["#OTU ID", "14SK041", "14SK802"]
    rows = [
        [-2920, "332", 294],
        [-1606, "302", 229],
        [-393, 141, 125],
        [-2109, 138, 120],
    ]
    table = make_table(header=header, rows=rows)
    table

We require a new column heading for the current header data. We also need to specify which existing column will become the header.

.. jupyter-execute::

    tp = table.transposed(new_column_name="sample", select_as_header="#OTU ID")
    tp

Specify markdown as the ``str()`` format
========================================

Using the method provides finer control over formatting.

.. jupyter-execute::

    from cogent3 import load_table

    table = load_table("data/stats.tsv", format="md")
    print(table)

Specify latex as the ``str()`` format
=====================================

Using the method provides finer control over formatting.

.. jupyter-execute::

    from cogent3 import load_table

    table = load_table("data/stats.tsv", format="tex")
    print(table)

Get a table as a markdown formatted string
==========================================

We use the ``justify`` argument to indicate the column justification.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    print(table.to_markdown(justify="ccr"))

Get a table as a latex formatted string
=======================================

.. jupyter-execute::

    table = load_table(
        "data/stats.tsv", title="Some stats.", legend="Derived from something."
    )
    print(table.to_latex(justify="ccr", label="tab:table1"))

Get a table as a restructured text csv-table
============================================

.. jupyter-execute::

    table = load_table(
        "data/stats.tsv", title="Some stats.", legend="Derived from something."
    )
    print(table.to_rst(csv_table=True))

Get a table as a restructured text grid table
=============================================

.. jupyter-execute::

    table = load_table(
        "data/stats.tsv", title="Some stats.", legend="Derived from something."
    )
    print(table.to_rst())

Getting a latex format table with ``to_string()``
=================================================

It is also possible to specify column alignment, table caption and other arguments.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    print(table.to_string(format="latex"))

Getting a bedGraph format with ``to_string()``
==============================================

This format allows display of annotation tracks on genome browsers. A small sample of a bigger table.

.. jupyter-execute::
    :hide-code:

    rows = [
        ["1", 100, 101, 1.123],
        ["1", 101, 102, 1.123],
        ["1", 102, 103, 1.123],
        ["1", 103, 104, 1.123],
        ["1", 104, 105, 1.123],
        ["1", 105, 106, 1.123],
        ["1", 106, 107, 1.123],
        ["1", 107, 108, 1.123],
        ["1", 108, 109, 1],
        ["1", 109, 110, 1],
        ["1", 110, 111, 1],
        ["1", 111, 112, 1],
        ["1", 112, 113, 1],
        ["1", 113, 114, 1],
        ["1", 114, 115, 1],
        ["1", 115, 116, 1],
        ["1", 116, 117, 1],
        ["1", 117, 118, 1],
        ["1", 118, 119, 2],
        ["1", 119, 120, 2],
        ["1", 120, 121, 2],
        ["1", 150, 151, 2],
        ["1", 151, 152, 2],
        ["1", 152, 153, 2],
        ["1", 153, 154, 2],
        ["1", 154, 155, 2],
        ["1", 155, 156, 2],
        ["1", 156, 157, 2],
        ["1", 157, 158, 2],
        ["1", 158, 159, 2],
        ["1", 159, 160, 2],
        ["1", 160, 161, 2],
    ]
    bgraph = make_table(header=["chrom", "start", "end", "value"], rows=rows)

.. jupyter-execute::

    bgraph.head()

Then converted.

.. jupyter-execute::

    print(
        bgraph.to_string(
            format="bedgraph",
            name="test track",
            description="test of bedgraph",
            color=(255, 0, 0),
            digits=0,
        )
    )

Getting a table as html
=======================

.. jupyter-execute::

    from cogent3 import load_table

    table = load_table("data/stats.tsv")
    straight_html = table.to_html()

What formats can be written?
============================

Appending any of the following to a filename will cause that format to be used for writing.

.. jupyter-execute::

    from cogent3.format.table import known_formats

    known_formats

Writing a latex formmated file
==============================

.. jupyter-execute::

    table.write("stats_tab.tex", justify="ccr", label="tab:table1")

Writing delimited formats
=========================

The delimiter can be specified explicitly using the ``sep`` argument or implicitly via the file name suffix.

.. jupyter-execute::

    table = load_table("data/stats.tsv")
    table.write("stats_tab.txt", sep="\t")

..  cleanup

.. jupyter-execute::
    :hide-code:

    import pathlib
    
    for name in ("stats_tab.txt", "stats_tab.tex"):
        p = pathlib.Path(name)
        if p.exists():
            p.unlink()