File: useful_utilities.rst

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (305 lines) | stat: -rw-r--r-- 7,470 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
****************
Useful Utilities
****************

.. authors, Daniel McDonald, Gavin Huttley, Antonio Gonzalez Pena, Rob Knight

.. include:: union_dict.rst

Using Cogent3's optimisers for your own functions
===================================================

You have a function that you want to maximise/minimise. The parameters in your function may be bounded (must lie in a specific interval) or not. The ``cogent3`` optimisers can be applied to these cases. The ``Powell`` (a local optimiser) and ``SimulatedAnnealing`` (a global optimiser) classes in particular have had their interfaces standardised for such use cases. We demonstrate for a very simple function below.

We write a simple factory function that uses a provided value for omega to compute the squared deviation from an estimate, then use it to create our optimisable function.

.. jupyter-execute::

    import numpy

    def DiffOmega(omega):
        def omega_from_S(S):
            omega_est = S / (1 - numpy.e ** (-1 * S))
            return abs(omega - omega_est) ** 2

        return omega_from_S

    omega = 0.1
    f = DiffOmega(omega)

We then import the minimise function and use it to minimise the function, obtaining the fit statistic and the associated estimate of S. Note that we provide lower and upper bounds (which are optional) and an initial guess for our parameter of interest (``S``).

.. jupyter-execute::

    from cogent3.maths.optimisers import maximise, minimise

    S = minimise(
        f,  # the function
        xinit=1.0,  # the initial value
        bounds=(-100, 100),  # [lower,upper] bounds for the parameter
        local=True,  # just local optimisation, not Simulated Annealing
        show_progress=False,
    )
    assert 0.0 <= f(S) < 1e-6
    print("S=%.4f" % S)

The minimise and maximise functions can also handle multidimensional optimisations, just make xinit (and the bounds) lists rather than scalar values.

Miscellaneous functions
=======================

.. index:: cogent3.util.misc

Force a variable to be iterable
-------------------------------

This support method will force a variable to be an iterable, allowing you to guarantee that the variable will be safe for use in, say, a ``for`` loop.

.. jupyter-execute::
    :raises: TypeError

    from cogent3.util.misc import iterable

    my_var = 10
    for i in my_var:
        print("will not work")

    for i in iterable(my_var):
        print(i)

Curry a function
----------------

curry(f,x)(y) = f(x,y) or = lambda y: f(x,y). This was modified from the Python Cookbook. Docstrings are also carried over.

.. jupyter-execute::

    from cogent3.util.misc import curry

    def foo(x, y):
        """Some function"""
        return x + y

    bar = curry(foo, 5)
    print(bar.__doc__)
    bar(10)

Test to see if an object is iterable
------------------------------------

Perform a simple test to see if an object supports iteration

.. jupyter-execute::

    from cogent3.util.misc import is_iterable

    can_iter = [1, 2, 3, 4]
    cannot_iter = 1.234
    is_iterable(can_iter)

.. jupyter-execute::

    is_iterable(cannot_iter)

Test to see if an object is a single char
-----------------------------------------

Perform a simple test to see if an object is a single character

.. jupyter-execute::

    from cogent3.util.misc import is_char

    class foo:
        pass

    is_char("a")

.. jupyter-execute::

    is_char("ab")

.. jupyter-execute::

    is_char(foo())

Flatten a deeply nested iterable
--------------------------------

To flatten a deeply nested iterable, use ``recursive_flatten``. This method supports multiple levels of nesting, and multiple iterable types

.. jupyter-execute::

    from cogent3.util.misc import recursive_flatten

    l = [[[[1, 2], "abcde"], [5, 6]], [7, 8], [9, 10]]

.. jupyter-execute::

    recursive_flatten(l)

Test to determine if ``list`` of ``tuple``
------------------------------------------

Perform a simple check to see if an object is not a list or a tuple

.. jupyter-execute::

    from cogent3.util.misc import not_list_tuple

    not_list_tuple(1)

.. jupyter-execute::

    not_list_tuple([1])

.. jupyter-execute::

    not_list_tuple("ab")

Create a case-insensitive iterable
----------------------------------

Create a case-insensitive object, for instance, if you want the key 'a' and 'A' to point to the same item in a dict

.. jupyter-execute::

    from cogent3.util.misc import add_lowercase

    d = {"A": 5, "B": 6, "C": 7, "foo": 8, 42: "life"}
    add_lowercase(d)

Construct a distance matrix lookup function
-------------------------------------------

Automatically construct a distance matrix lookup function. This is useful for maintaining flexibility about whether a function is being computed or if a lookup is being used

.. jupyter-execute::

    from numpy import array

    from cogent3.util.misc import DistanceFromMatrix

    m = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    f = DistanceFromMatrix(m)
    f(0, 0)

.. jupyter-execute::

    f(1, 2)

Check class types
-----------------

Check an object against base classes or derived classes to see if it is acceptable

.. jupyter-execute::

    from cogent3.util.misc import ClassChecker

    class not_okay(object):
        pass

    no = not_okay()

    class okay(object):
        pass

    o = okay()

    class my_dict(dict):
        pass

    md = my_dict()
    cc = ClassChecker(str, okay, dict)
    o in cc

.. jupyter-execute::

    no in cc

.. jupyter-execute::

    5 in cc

.. jupyter-execute::

    {"a": 5} in cc

.. jupyter-execute::

    "asasas" in cc

.. jupyter-execute::

    md in cc

Delegate to a separate object
-----------------------------

Delegate object method calls, properties and variables to the appropriate object. Useful to combine multiple objects together while assuring that the calls will go to the correct object.

.. jupyter-execute::

    from cogent3.util.misc import Delegator

    class ListAndString(list, Delegator):
        def __init__(self, items, string):
            Delegator.__init__(self, string)
            for i in items:
                self.append(i)

    ls = ListAndString([1, 2, 3], "ab_cd")
    len(ls)

.. jupyter-execute::

    ls[0]

.. jupyter-execute::

    ls.upper()

.. jupyter-execute::

    ls.split("_")

Wrap a function to hide from a class
------------------------------------

Wrap a function to hide it from a class so that it isn't a method.

.. jupyter-execute::

    from cogent3.util.misc import FunctionWrapper

    f = FunctionWrapper(str)
    f

.. jupyter-execute::

    f(123)

Construct a constrained container
---------------------------------

Wrap a container with a constraint. This is useful for enforcing that the data contained is valid within a defined context. Cogent3 provides a base ``ConstrainedContainer`` which can be used to construct user-defined constrained objects. Cogent3 also provides ``ConstrainedString``, ``ConstrainedList``, and ``ConstrainedDict``. These provided types fully cover the builtin types while staying integrated with the ``ConstrainedContainer``.

Here is a light example of the ``ConstrainedDict``

.. jupyter-execute::
    :hide-code:

    from cogent3.util.misc import ConstraintError

.. jupyter-execute::

    from cogent3.util.misc import ConstrainedDict

    d = ConstrainedDict({"a": 1, "b": 2, "c": 3}, constraint="abc")
    d

.. jupyter-execute::
    :raises: ConstraintError

    d["d"] = 5