1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#!/usr/bin/env python
import sys # ,hotshot
from cogent3 import load_aligned_seqs, load_tree
from cogent3.evolve.substitution_model import (
TimeReversibleCodon,
TimeReversibleDinucleotide,
TimeReversibleNucleotide,
)
from cogent3.maths import optimisers
from cogent3.util import parallel
ALIGNMENT = load_aligned_seqs(filename="data/brca1.fasta")
TREE = load_tree(filename="data/murphy.tree")
def subtree(size):
names = ALIGNMENT.names[:size]
assert len(names) == size
tree = TREE.get_sub_tree(names) # .balanced()
return names, tree
def brca_test(subMod, names, tree, length, par_rules, **kw):
# names = ALIGNMENT.names[:taxa]
# assert len(names) == taxa
tree = TREE.get_sub_tree(names) # .balanced()
aln = ALIGNMENT.take_seqs(names).omit_gap_pos()[:length]
assert len(aln) == length, (len(aln), length)
# the_tree_analysis = LikelihoodFunction(treeobj = tree, submodelobj = subMod, alignobj = aln)
par_controller = subMod.make_likelihood_function(tree, **kw)
for par_rule in par_rules:
par_controller.set_param_rule(**par_rule)
# lf = par_controller.make_calculator(aln)
return (par_controller, aln)
def measure_evals_per_sec(pc, aln):
pc.set_alignment(aln)
return pc.measure_evals_per_second(time_limit=2.0, wall=False)
def makePC(modelClass, parameterisation, length, taxa, tree, opt_mprobs, **kw):
modelClass = eval(modelClass)
if parameterisation is not None:
predicates = {"silly": silly_predicate}
par_rules = [{"par_name": "silly", "is_independent": parameterisation}]
else:
predicates = {}
par_rules = []
subMod = modelClass(
equal_motif_probs=True,
optimise_motif_probs=opt_mprobs,
predicates=predicates,
recode_gaps=True,
mprob_model="conditional",
)
(pc, aln) = brca_test(subMod, taxa, tree, length, par_rules, **kw)
return (pc, aln)
def quiet(f, *args, **kw):
import io
import sys
temp = io.StringIO()
_stdout = sys.stdout
try:
sys.stdout = temp
result = f(*args, **kw)
finally:
# pass
sys.stdout = _stdout
return result
def evals_per_sec(*args):
pc, aln = makePC(*args) # quiet(makeLF, *args)
speed1 = measure_evals_per_sec(pc, aln)
speed = str(int(speed1))
return speed
class CompareImplementations(object):
def __init__(self, switch):
self.switch = switch
def __call__(self, *args):
self.switch(0)
(pc, aln) = quiet(makePC, *args)
speed1 = measure_evals_per_sec(pc, aln)
self.switch(1)
(pc, aln) = quiet(makePC, *args)
speed2 = measure_evals_per_sec(pc, aln)
if speed1 < speed2:
speed = f"+{speed2 / speed1:2.1f}"
else:
speed = f"-{speed1 / speed2:2.1f}"
if speed in ["+1.0", "-1.0"]:
speed = ""
return speed
def benchmarks(test):
alphabets = ["Nucleotide", "Dinucleotide", "Codon"]
sequence_lengths = [18, 2004]
treesizes = [5, 20]
for optimise_motifs, parameterisation in [
(False, "global"),
(False, "local"),
(True, "global"),
]:
print(parameterisation, ["", "opt motifs"][optimise_motifs])
print(" " * 14, end=" ")
wcol = 5 * len(sequence_lengths) + 2
for alphabet in alphabets:
print(str(alphabet).ljust(wcol), end=" ")
print()
print("%-15s" % "", end=" ") # "length"
for alphabet in alphabets:
for sequence_length in sequence_lengths:
print("%4s" % sequence_length, end=" ")
print(" ", end=" ")
print()
print(
" " * 12
+ (
" | ".join(
[""]
+ ["-" * (len(sequence_lengths) * 5) for alphabet in alphabets]
+ [""]
)
)
)
for treesize in treesizes:
print(("%4s taxa | " % treesize), end=" ")
(taxa, tree) = subtree(treesize)
for alphabet in alphabets:
for sequence_length in sequence_lengths:
speed = test(
alphabet,
parameterisation == "local",
sequence_length,
taxa,
tree,
optimise_motifs,
)
print("%4s" % speed, end=" ")
print("| ", end=" ")
print()
print()
print()
def silly_predicate(a, b):
return a.count("A") > a.count("T") or b.count("A") > b.count("T")
# def asym_predicate((a,b)):
# print a, b, 'a' in a
# return 'a' in a
# mA = Codon()
# mA.setPredicates({'asym': asym_predicate})
def exponentiator_switch(switch):
import cogent3.evolve.substitution_calculation
cogent3.evolve.substitution_calculation.use_new = switch
if "relative" in sys.argv:
test = CompareImplementations(exponentiator_switch)
else:
test = evals_per_sec
parallel.inefficiency_forgiven = True
if parallel.get_rank() > 0:
# benchmarks(test)
quiet(benchmarks, test)
else:
try:
benchmarks(test)
except KeyboardInterrupt:
print(" OK")
|