File: test_align.py

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (757 lines) | stat: -rw-r--r-- 28,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
from unittest import TestCase

import numpy
import pytest

from numpy import log2
from numpy.testing import assert_allclose

from cogent3 import (
    DNA,
    get_app,
    get_moltype,
    load_aligned_seqs,
    make_aligned_seqs,
    make_tree,
    make_unaligned_seqs,
)
from cogent3.align.align import (
    local_pairwise,
    make_dna_scoring_dict,
    make_generic_scoring_dict,
)
from cogent3.app import align as align_app
from cogent3.app.align import (
    _combined_refseq_gaps,
    _gap_difference,
    _gap_union,
    _GapOffset,
    _gaps_for_injection,
    _merged_gaps,
    pairwise_to_multiple,
    smith_waterman,
)
from cogent3.app.composable import NotCompleted
from cogent3.core.alignment import Aligned, Alignment, ArrayAlignment
from cogent3.core.location import gap_coords_to_map


_seqs = {
    "Human": "GCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACT",
    "Bandicoot": "NACTCATTAATGCTTGAAACCAGCAGTTTATTGTCCAAC",
    "Rhesus": "GCCAGCTCATTACAGCATGAGAACAGTTTGTTACTCACT",
    "FlyingFox": "GCCAGCTCTTTACAGCATGAGAACAGTTTATTATACACT",
}

_nucleotide_models = [
    "JC69",
    "K80",
    "F81",
    "HKY85",
    "TN93",
    "GTR",
    "ssGN",
    "GN",
    "BH",
    "DT",
]

_codon_models = [
    "CNFGTR",
    "CNFHKY",
    "MG94HKY",
    "MG94GTR",
    "GY94",
    "H04G",
    "H04GK",
    "H04GGK",
    "GNC",
]


def make_pairwise(data, refseq_name, moltype="dna", array_align=False):
    """returns series of refseq, [(n, pwise aln),..]. All alignments are to ref_seq"""
    aln = make_aligned_seqs(
        data,
        array_align=array_align,
        moltype=moltype,
    )
    refseq = aln.get_seq(refseq_name)
    pwise = [
        (n, aln.take_seqs([refseq_name, n]).omit_gap_pos())
        for n in aln.names
        if n != refseq_name
    ]
    return refseq, pwise


def make_aligned(gaps_lengths, seq, name="seq1"):
    seq = seq.moltype.make_seq(seq, name=name)
    return Aligned(gap_coords_to_map(gaps_lengths, len(seq)), seq)


class RefalignmentTests(TestCase):
    seqs = make_unaligned_seqs(_seqs, moltype=DNA)

    def test_align_to_ref(self):
        """correctly aligns to a reference"""
        aligner = align_app.align_to_ref(ref_seq="Human")
        aln = aligner(self.seqs)
        expect = {
            "Bandicoot": "---NACTCATTAATGCTTGAAACCAGCAGTTTATTGTCCAAC",
            "FlyingFox": "GCCAGCTCTTTACAGCATGAGAACAG---TTTATTATACACT",
            "Human": "GCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACT",
            "Rhesus": "GCCAGCTCATTACAGCATGAGAAC---AGTTTGTTACTCACT",
        }
        self.assertEqual(aln.to_dict(), expect)

    def test_align_to_ref_generic_moltype(self):
        """tests when the moltype is generic"""
        test_moltypes = ["text", "rna", "protein", "protein_with_stop", "bytes", "ab"]
        for test_moltype in test_moltypes:
            aligner = align_app.align_to_ref(moltype=test_moltype)
            self.assertEqual(aligner._moltype.label, test_moltype)
            self.assertEqual(
                aligner._kwargs["S"],
                make_generic_scoring_dict(10, get_moltype(test_moltype)),
            )

    def test_align_to_ref_result_has_moltype(self):
        """aligned object has correct moltype"""
        aligner = align_app.align_to_ref(moltype="dna")
        got = aligner(self.seqs)
        self.assertEqual(got.moltype.label, "dna")

    def test_merged_gaps(self):
        """correctly merges gaps"""
        a = dict([(2, 3), (4, 9)])
        b = dict([(2, 6), (8, 5)])
        # omitting one just returns the other
        self.assertIs(_merged_gaps(a, {}), a)
        self.assertIs(_merged_gaps({}, b), b)
        got = _merged_gaps(a, b)
        self.assertEqual(got, [(2, 6), (4, 9), (8, 5)])

    def test_aln_to_ref_known(self):
        """correctly recapitulates known case"""
        orig = make_aligned_seqs(
            {
                "Ref": "CAG---GAGAACAGAAACCCAT--TACTCACT",
                "Qu1": "CAG---GAGAACAG---CCCGTGTTACTCACT",
                "Qu2": "CAGCATGAGAACAGAAACCCGT--TA---ACT",
                "Qu3": "CAGCATGAGAACAGAAACCCGT----CTCACT",
                "Qu4": "CAGCATGAGAACAGAAACCCGTGTTACTCACT",
                "Qu5": "CAG---GAGAACAG---CCCAT--TACTCACT",
                "Qu6": "CAG---GA-AACAG---CCCAT--TACTCACT",
                "Qu7": "CAG---GA--ACAGA--CCCGT--TA---ACT",
            },
            moltype="dna",
        )
        expect = orig.to_dict()
        aligner = align_app.align_to_ref(ref_seq="Ref")
        aln = aligner.main(orig.degap())
        self.assertEqual(aln.to_dict(), expect)

    def test_gap_union(self):
        """correctly identifies the union of all gaps"""
        # fails if not all sequences same
        seq = DNA.make_seq("AACCCGTT")
        all_gaps = dict([(0, 3), (2, 1), (5, 3), (6, 3)])
        make_aligned(all_gaps, seq)
        gap_sets = [
            dict([(5, 1), (6, 3)]),
            dict([(2, 1), (5, 3)]),
            dict([(2, 1), (5, 1), (6, 2)]),
            dict([(0, 3)]),
        ]
        seqs = [make_aligned(gaps, seq) for gaps in gap_sets]
        got = _gap_union(seqs)
        self.assertEqual(got, dict(all_gaps))

        # must all be Aligned instances
        with self.assertRaises(TypeError):
            _gap_union(seqs + ["GGGGGGGG"])

        # must all have the same name
        with self.assertRaises(ValueError):
            _gap_union(seqs + [make_aligned({}, seq, name="blah")])

    def test_gap_difference(self):
        """correctly identifies the difference in gaps"""
        seq = DNA.make_seq("AACCCGTT")
        dict([(0, 3), (2, 1), (5, 3), (6, 3)])
        gap_sets = [
            dict([(5, 1), (6, 3)]),
            dict([(2, 1), (5, 3)]),
            dict([(2, 1), (5, 1), (6, 2)]),
            dict([(0, 3)]),
        ]
        seqs = [make_aligned(gaps, seq) for gaps in gap_sets]
        union = _gap_union(seqs)
        expects = [
            [dict([(0, 3), (2, 1)]), dict([(5, 2)])],
            [dict([(0, 3), (6, 3)]), {}],
            [dict([(0, 3)]), dict([(5, 2), (6, 1)])],
            [dict([(2, 1), (5, 3), (6, 3)]), {}],
        ]
        for seq, (plain, overlap) in zip(seqs, expects):
            seq_gaps = dict(seq.map.get_gap_coordinates())
            got_plain, got_overlap = _gap_difference(seq_gaps, union)
            self.assertEqual(got_plain, dict(plain))
            self.assertEqual(got_overlap, dict(overlap))

    def test_merged_gaps(self):
        """correctly handles gap values"""
        a_gaps = {0: 2}
        b_gaps = {2: 2}
        self.assertEqual(_merged_gaps(a_gaps, {}), a_gaps)
        self.assertEqual(_merged_gaps({}, b_gaps), b_gaps)

    def test_combined_refseq_gaps(self):
        union = dict([(0, 3), (2, 1), (5, 3), (6, 3)])
        gap_sets = [
            [(5, 1), (6, 3)],
            [(2, 1), (5, 3)],
            [(2, 1), (5, 1), (6, 2)],
            [(0, 3)],
        ]
        # for subset gaps, their alignment position is the
        # offset + their position + their gap length
        expects = [
            dict([(6, 2), (0, 3), (2, 1)]),
            dict([(0, 3), (10, 3)]),
            dict([(0, 3), (5 + 1 + 1, 2), (6 + 2 + 2, 1)]),
            dict([(2 + 3, 1), (5 + 3, 3), (6 + 3, 3)]),
        ]
        for i, gap_set in enumerate(gap_sets):
            got = _combined_refseq_gaps(dict(gap_set), union)
            self.assertEqual(got, expects[i])

        # if union gaps equals ref gaps
        got = _combined_refseq_gaps({2: 2}, {2: 2})
        self.assertEqual(got, {})

    def test_gaps_for_injection(self):
        # for gaps before any otherseq gaps, alignment coord is otherseq coord
        oseq_gaps = {2: 1, 6: 2}
        rseq_gaps = {0: 3}
        expect = {0: 3, 2: 1, 6: 2}
        seqlen = 50
        got = _gaps_for_injection(oseq_gaps, rseq_gaps, seqlen)
        self.assertEqual(got, expect)
        # for gaps after otherseq gaps seq coord is align coord minus gap
        # length totals
        got = _gaps_for_injection(oseq_gaps, {4: 3}, seqlen)
        expect = {2: 1, 3: 3, 6: 2}
        self.assertEqual(got, expect)
        got = _gaps_for_injection(oseq_gaps, {11: 3}, seqlen)
        expect = {2: 1, 6: 2, 8: 3}
        self.assertEqual(got, expect)
        # gaps beyond sequence length added to end of sequence
        got = _gaps_for_injection({2: 1, 6: 2}, {11: 3, 8: 3}, 7)
        expect = {2: 1, 6: 2, 7: 6}
        self.assertEqual(got, expect)

    def test_pairwise_to_multiple(self):
        """the standalone function constructs a multiple alignment"""
        expect = {
            "Ref": "CAG---GAGAACAGAAACCCAT--TACTCACT",
            "Qu1": "CAG---GAGAACAG---CCCGTGTTACTCACT",
            "Qu2": "CAGCATGAGAACAGAAACCCGT--TA---ACT",
            "Qu3": "CAGCATGAGAACAGAAACCCGT----CTCACT",
            "Qu7": "CAG---GA--ACAGA--CCCGT--TA---ACT",
            "Qu4": "CAGCATGAGAACAGAAACCCGTGTTACTCACT",
            "Qu5": "CAG---GAGAACAG---CCCAT--TACTCACT",
            "Qu6": "CAG---GA-AACAG---CCCAT--TACTCACT",
        }
        aln = make_aligned_seqs(expect, moltype="dna").omit_gap_pos()
        expect = aln.to_dict()
        for refseq_name in ["Qu3"]:
            refseq, pwise = make_pairwise(expect, refseq_name)
            got = pairwise_to_multiple(pwise, ref_seq=refseq, moltype=refseq.moltype)
            self.assertEqual(len(got), len(aln))
            orig = dict(pwise)
            _, pwise = make_pairwise(got.to_dict(), refseq_name)
            got = dict(pwise)
            # should be able to recover the original pairwise alignments
            for key, value in got.items():
                self.assertEqual(value.to_dict(), orig[key].to_dict(), msg=refseq_name)

            with self.assertRaises(TypeError):
                pairwise_to_multiple(pwise, "ACGG", DNA)

    def test_pairwise_to_multiple_2(self):
        """correctly handle alignments with gaps beyond end of query"""

        # cogent3.core.alignment.DataError: Not all sequences are the same length:
        # max is 425, min is 419
        def make_pwise(data, ref_name):
            result = []
            for n, seqs in data.items():
                result.append(
                    [n, make_aligned_seqs(data=seqs, moltype="dna", array_align=False)]
                )
            ref_seq = result[0][1].get_seq(ref_name)
            return result, ref_seq

        pwise = {
            "Platypus": {
                "Opossum": "-----------------GTGC------GAT-------------------------------CCAAAAACCTGTGTC--ACCGT--------GCC----CAGAGCCTCC----CTCAGGCCGCTCGGGGAG---TG-------GCCCCCCG--GC-GGAGGGCAGGGATGGGGAGT-AGGGGTGGCAGTC----GGAACTGGAAGAGCTT-TACAAACC---------GA--------------------GGCT-AGAGGGTC-TGCTTAC-------TTTTTACCTTGG------------GTTTG-CCAGGAGGTAG----------AGGATGA-----------------CTAC--ATCAAG----AGC------------TGGG-------------",
                "Platypus": "CAGGATGACTACATCAAGAGCTGGGAAGATAACCAGCAAGGAGATGAAGCTCTGGACACTACCAAAGACCCCTGCCAGAACGTGAAGTGCAGCCGACACAAGGTCTGCATCGCTCAGGGCTACCAGAGAGCCATGTGTATCAGCCGCAAGAAGCTGGAGCACAGGATCAAGCAGCCAGCCCTGAAACTCCATGGAAACAGAGAGAGCTTCTGCAAGCCTTGTCACATGACCCAGCTGGCCTCTGTCTGCGGCTCGGACGGACACACTTACAGCTCCGTGTGCAAACTGGAGCAGCAGGCCTGTCTGACCAGCAAGCAGCTGACAGTCAAGTGTGAAGGCCAGTGCCCGTGCCCCACCGATCATGTTCCAGCCTCCACCGCTGATGGAAAACAAGAGACCT",
            },
            "Wombat": {
                "Opossum": "GTGCGATCCAAAAACCTGTGTCACCGTGCCCAGAGCCTCCCTCAGGCCGCTCGG-GGAGTGGCCCCCCGGCGGAGGGCAGGGATGGGGAGTAGGGGTGGCAGTCGGAACTGGAAGAGCTTTACAAACCGAGGCTAGAGGGTCTGCTTACTTTTTACCTTGG------GTTT--GC-CAGGA---GGT----AGAGGATGACTACATCAAGAGCTGGG---------------------------",
                "Wombat": "--------CA----------TCACCGC-CCCTGCACC---------CGGCTCGGCGGAGGGGGATTCTAA-GGGGGTCAAGGATGGCGAG-ACCCCTGGCAATTTCA--TGGAGGA------CGAGCAATGGCT-----GTC-GTCCATCTCCCAGTATAGCGGCAAGATCAAGCACTGGAACCGCTTCCGAGACGATGACTACATCAAGAGCTGGGAGGACAGTCAGCAAGGAGATGAAGCGC",
            },
        }
        pwise, ref_seq = make_pwise(pwise, "Opossum")
        aln = pairwise_to_multiple(pwise, ref_seq, ref_seq.moltype)
        self.assertNotIsInstance(aln, NotCompleted)

        pwise = {
            "Platypus": {
                "Opossum": "-----------------GTGC------GAT-------------------------------CCAAAAACCTGTGTC",
                "Platypus": "CAGGATGACTACATCAAGAGCTGGGAAGATAACCAGCAAGGAGATGAAGCTCTGGACACTACCAAAGACCCCTGCC",
            },
            "Wombat": {
                "Opossum": "GTGCGATCCAAAAACCTGTGTC",
                "Wombat": "--------CA----------TC",
            },
        }
        pwise, ref_seq = make_pwise(pwise, "Opossum")
        aln = pairwise_to_multiple(pwise, ref_seq, ref_seq.moltype)
        self.assertNotIsInstance(aln, NotCompleted)


class ProgressiveAlignment(TestCase):
    seqs = make_unaligned_seqs(_seqs, moltype=DNA)
    treestring = "(Bandicoot:0.4,FlyingFox:0.05,(Rhesus:0.06," "Human:0.0):0.04);"

    def test_progressive_align_protein_moltype(self):
        """tests guide_tree is None and moltype is protein"""
        from cogent3 import load_aligned_seqs

        seqs = load_aligned_seqs("data/nexus_aa.nxs", moltype="protein")
        seqs = seqs.degap()
        seqs = seqs.take_seqs(["Rat", "Cow", "Human", "Mouse", "Whale"])
        aligner = align_app.progressive_align(model="WG01")
        got = aligner(seqs)
        self.assertNotIsInstance(got, NotCompleted)
        aligner = align_app.progressive_align(model="protein")
        got = aligner(seqs)
        self.assertNotIsInstance(got, NotCompleted)

    def test_progressive_align_nuc(self):
        """progressive alignment with nuc models"""
        aligner = align_app.progressive_align(model="TN93", distance="TN93")
        aln = aligner(self.seqs)
        self.assertIsInstance(aln, ArrayAlignment)
        self.assertEqual(len(aln), 42)
        self.assertEqual(aln.moltype, aligner._moltype)
        # todo the following is not robust across operating systems
        # so commenting out for now, but needs to be checked
        # expect = {'Human': 'GCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACT',
        #           'Rhesus': 'GCCAGCTCATTACAGCATGAGAA---CAGTTTGTTACTCACT',
        #           'Bandicoot': 'NACTCATTAATGCTTGAAACCAG---CAGTTTATTGTCCAAC',
        #           'FlyingFox': 'GCCAGCTCTTTACAGCATGAGAA---CAGTTTATTATACACT'}
        # got = aln.to_dict()
        # self.assertEqual(got, expect)

    def test_progressive_fails(self):
        """should return NotCompletedResult along with message"""
        # Bandicoot has an inf-frame stop codon
        seqs = make_unaligned_seqs(
            data={"Human": "GCCTCA", "Rhesus": "GCCAGCTCA", "Bandicoot": "TGATCATTA"},
            moltype="dna",
        )
        aligner = align_app.progressive_align(model="codon")
        got = aligner(seqs)
        self.assertTrue(type(got), NotCompleted)

    def test_progress_with_guide_tree(self):
        """progressive align works with provided guide tree"""
        tree = make_tree(treestring=self.treestring)
        aligner = align_app.progressive_align(
            model="nucleotide", guide_tree=self.treestring
        )
        aln = aligner(self.seqs)
        self.assertEqual(len(aln), 42)
        aligner = align_app.progressive_align(model="nucleotide", guide_tree=tree)
        aln = aligner(self.seqs)
        self.assertEqual(len(aln), 42)
        # even if it has underscores in name
        treestring = (
            "(Bandicoot:0.4,FlyingFox:0.05,(Rhesus_macaque:0.06," "Human:0.0):0.04);"
        )
        aligner = align_app.progressive_align(model="nucleotide", guide_tree=treestring)
        data = self.seqs.to_dict()
        data["Rhesus macaque"] = data.pop("Rhesus")
        seqs = make_unaligned_seqs(data)
        aln = aligner(seqs)
        self.assertEqual(len(aln), 42)
        # guide tree with no lengths raises value error
        with self.assertRaises(ValueError):
            _ = align_app.progressive_align(
                model="nucleotide",
                guide_tree="(Bandicoot,FlyingFox,(Rhesus_macaque,Human));",
            )

    def test_progressive_align_codon(self):
        """progressive alignment with codon models"""
        aligner = align_app.progressive_align(model="GY94")
        aln = aligner(self.seqs)
        self.assertEqual(len(aln), 42)
        aligner = align_app.progressive_align(model="codon")
        aln = aligner(self.seqs)
        self.assertEqual(len(aln), 42)

    def test_pickle_progressive_align(self):
        """test progressive_align is picklable"""
        from pickle import dumps, loads

        aligner = align_app.progressive_align(model="codon")
        aln = aligner(self.seqs)
        got = loads(dumps(aln))
        self.assertTrue(got)

    def test_with_genetic_code(self):
        """handles genetic code argument"""
        aligner = align_app.progressive_align(model="GY94", gc="2")
        # the 'TGA' codon is a sense codon in vertebrate mitochondrial
        self.assertTrue("TGA" in aligner._model.get_motifs())
        aligner = align_app.progressive_align(model="codon")
        # but a stop codon in the standard nuclear
        self.assertTrue("TGA" not in aligner._model.get_motifs())
        # try using a nuclear
        with self.assertRaises(TypeError):
            aligner = align_app.progressive_align(model="nucleotide", gc="2")

    def test_progressive_align_protein(self):
        """progressive alignment with protein models"""
        seqs = self.seqs.get_translation()
        aligner = align_app.progressive_align(model="WG01", guide_tree=self.treestring)
        aln = aligner(seqs)
        self.assertEqual(len(aln), 14)
        aligner = align_app.progressive_align(
            model="protein", guide_tree=self.treestring
        )
        aln = aligner(seqs)
        self.assertEqual(len(aln), 14)


class GapOffsetTests(TestCase):
    def test_empty(self):
        """create an empty offset"""
        goff = _GapOffset({})
        for i in range(4):
            self.assertEqual(goff[i], 0)

        goff = _GapOffset({}, invert=True)
        for i in range(4):
            self.assertEqual(goff[i], 0)

    def test_repr_str(self):
        """repr and str work"""
        goff = _GapOffset({}, invert=True)
        for func in (str, repr):
            self.assertEqual(func(goff), "{}")

    def test_gap_offset(self):
        goff = _GapOffset({1: 2, 3: 4})
        self.assertEqual(goff.min_pos, 1)
        self.assertEqual(goff.max_pos, 3)
        self.assertEqual(goff.total, 6)
        self.assertEqual(goff[0], 0)
        self.assertEqual(goff[1], 0)
        self.assertEqual(goff[2], 2)
        self.assertEqual(goff[3], 2)
        self.assertEqual(goff[4], 6)

    def test_gap_offset_invert(self):
        aln2seq = _GapOffset({2: 1, 5: 2, 7: 2}, invert=True)
        self.assertEqual(aln2seq._store, {3: 1, 2: 0, 8: 3, 6: 1, 12: 5, 10: 3})
        self.assertEqual(aln2seq.max_pos, 12)
        self.assertEqual(aln2seq.min_pos, 2)
        self.assertEqual(aln2seq[11], 3)
        seq2aln = _GapOffset({2: 1, 5: 2, 7: 2})
        for seq_pos in range(20):
            aln_pos = seq_pos + seq2aln[seq_pos]
            self.assertEqual(aln_pos - aln2seq[aln_pos], seq_pos)


@pytest.mark.parametrize("cls", (Alignment, ArrayAlignment))
def test_information_content_score(cls):
    """Tests that the alignment_quality generates the right alignment quality
    value based on the Hertz-Stormo metric. expected values are hand calculated
    using the formula in the paper."""
    app_equifreq = get_app("ic_score", equifreq_mprobs=True)
    app_not_equifreq = get_app("ic_score", equifreq_mprobs=False)

    aln = cls(["AATTGA", "AGGTCC", "AGGATG", "AGGCGT"], moltype="dna")
    got = app_equifreq(aln)
    expect = log2(4) + (3 / 2) * log2(3) + (1 / 2) * log2(2) + (1 / 2) * log2(2)
    assert_allclose(got, expect)
    # should be the same with the default moltype too
    aln = cls(["AATTGA", "AGGTCC", "AGGATG", "AGGCGT"])
    got = app_equifreq(aln)
    assert_allclose(got, expect)

    aln = cls(["AAAC", "ACGC", "AGCC", "A-TC"], moltype="dna")
    got = app_not_equifreq(aln)
    expect = (
        2 * log2(1 / 0.4)
        + log2(1 / (4 * 0.4))
        + (1 / 2) * log2(1 / (8 / 15))
        + (1 / 4) * log2(1 / (4 / 15))
    )
    assert_allclose(got, expect)

    # 1. Alignment just gaps - alignment_quality returns 0.0
    aln = cls(["----", "----"])
    got = app_equifreq(aln)
    assert_allclose(got, 0.0)

    # 2 Just one sequence - alignment_quality returns 0.0
    aln = cls(["AAAC"])
    got = app_equifreq(aln)
    assert_allclose(got, 0.0)

    # 3.1 Two seqs, one all gaps. (equifreq_mprobs=True)
    aln = cls(["----", "ACAT"])
    got = app_equifreq(aln)
    assert_allclose(got, 1.1699250014423124)

    # 3.2 Two seqs, one all gaps. (equifreq_mprobs=False)
    aln = cls(["----", "AAAA"])
    got = app_not_equifreq(aln)
    assert_allclose(got, -2)


@pytest.fixture(scope="function")
def aln():
    aligner = align_app.progressive_align(model="TN93", distance="TN93")
    seqs = make_unaligned_seqs(_seqs, moltype=DNA)
    return aligner(seqs)


@pytest.fixture(scope="function")
def seqs():
    seqs = make_unaligned_seqs(_seqs, moltype=DNA)
    return seqs


def test_cogent3_score(aln):
    get_score = get_app("cogent3_score")
    score = get_score(aln)
    assert score < -100


@pytest.mark.parametrize("del_all_params", (True, False))
def test_cogent3_score_missing(aln, del_all_params):
    get_score = get_app("cogent3_score")
    if del_all_params:
        aln.info.pop("align_params")
    else:
        aln.info["align_params"].pop("lnL")
    score = get_score(aln)
    assert isinstance(score, NotCompleted)


def test_sp_score_exclude_gap():
    # no gap penalty
    app = get_app("sp_score", calc="pdist", gap_extend=0, gap_insert=0)
    data = {"s1": "AAGAA-A", "s2": "-ATAATG", "s3": "C-TGG-G"}
    # prop unchanged s1-s2, s1-s3
    expect = sum([6 * 3 / 6, 0, 5 * 2 / 5])
    aln = make_aligned_seqs(data, moltype="dna")
    got = app.main(aln)
    assert_allclose(got, expect)


def test_sp_fail():
    aln = make_aligned_seqs(
        data={"a": "ATG---------AATCGAAGA", "b": "GTG---------GAAAAGCAG"}, moltype="dna"
    )
    app = get_app("sp_score")
    got = app.main(aln)
    assert isinstance(got, NotCompleted)
    assert "NaN" in got.message


def test_sp_score_additive_gap():
    # additive gap score
    app = get_app("sp_score", calc="pdist", gap_extend=1, gap_insert=0)
    data = {"s1": "AAGAA-A", "s2": "-ATAATG", "s3": "C-TGG-G"}
    # match score
    mscore = numpy.array([6 * 3 / 6, 0, 5 * 2 / 5])
    # gap score
    gscore = numpy.array([2, 1, 3])
    aln = make_aligned_seqs(data, moltype="dna")
    got = app.main(aln)
    assert_allclose(got, (mscore - gscore).sum())


def test_sp_score_affine_gap():
    # affine gap score
    app = get_app("sp_score", calc="pdist", gap_extend=1, gap_insert=2)
    data = {"a": "AAGAA-A", "b": "-ATAATG", "c": "C-TGG-G"}
    # match score
    mscore = numpy.array([6 * 3 / 6, 0, 5 * 2 / 5])
    # gap score
    gscore = numpy.array([2 + 4, 2 + 1, 3 + 6])
    aln = make_aligned_seqs(data, moltype="dna")
    got = app.main(aln)
    assert_allclose(got, (mscore - gscore).sum())


def test_progressive_align_one_seq(seqs):
    """progressive alignment with no provided tree and approx_dists=False
    will use a quick alignment to build the tree"""
    aligner = align_app.progressive_align(model="TN93", approx_dists=True)
    seqs = seqs.take_seqs(seqs.names[0])
    got = aligner(seqs)
    assert isinstance(got, NotCompleted)


def test_progressive_align_tree_from_reference(seqs):
    """progressive alignment with no provided tree and approx_dists=False
    will use a quick alignment to build the tree"""
    aligner = align_app.progressive_align(model="TN93", approx_dists=False)
    aln = aligner(seqs)
    assert isinstance(aln, ArrayAlignment)
    assert len(aln) == 42
    assert aln.moltype == aligner._moltype


def test_progressive_align_tree_from_approx_dist(seqs):
    """progressive alignment with no provided tree and approx_dists=True
    will use an approximated distance measure to build the tree"""
    aligner = align_app.progressive_align(model="TN93", approx_dists=True)
    aln = aligner(seqs)
    assert isinstance(aln, ArrayAlignment)
    assert len(aln) == 42
    assert aln.moltype == aligner._moltype


def test_progressive_align_iters(seqs):
    """progressive alignment works with iters>1"""
    aligner = align_app.progressive_align(model="TN93")
    aln = aligner(seqs)
    assert isinstance(aln, ArrayAlignment)
    assert len(aln) == 42
    assert aln.moltype == aligner._moltype


def test_smith_waterman_matches_local_pairwise(seqs):
    aligner = smith_waterman()
    coll = make_unaligned_seqs(data=[seqs.get_seq("Human"), seqs.get_seq("Bandicoot")])
    got = aligner(coll)
    s = make_dna_scoring_dict(10, -1, -8)
    insertion = 20
    extension = 2
    expect = local_pairwise(
        seqs.get_seq("Human"),
        seqs.get_seq("Bandicoot"),
        s,
        insertion,
        extension,
        return_score=False,
    )
    assert got.to_dict() == expect.to_dict()


def test_smith_waterman_score(seqs):
    aligner = smith_waterman()
    coll = make_unaligned_seqs(
        data=[seqs.get_seq("Human"), seqs.get_seq("Bandicoot")], moltype="dna"
    )
    aln = aligner(coll)
    got = aln.info["align_params"]["sw_score"]
    s = make_dna_scoring_dict(10, -1, -8)
    insertion = 20
    extension = 2
    _, expect = local_pairwise(
        seqs.get_seq("Human"),
        seqs.get_seq("Bandicoot"),
        s,
        insertion,
        extension,
        return_score=True,
    )
    assert got == expect


@pytest.mark.parametrize(
    "moltype", ("text", "rna", "protein", "protein_with_stop", "bytes", "ab")
)
def test_smith_waterman_generic_moltype(moltype):
    """tests when the moltype is generic"""
    aligner = smith_waterman(moltype=moltype)
    assert aligner._score_matrix == make_generic_scoring_dict(10, get_moltype(moltype))


def test_smith_waterman_no_moltype(seqs):
    """If no moltype is provided and the SequenceCollection has no specified moltype, the
    default moltype ('dna') should be used.
    """
    aligner = smith_waterman()
    coll = make_unaligned_seqs(data=[seqs.get_seq("Human"), seqs.get_seq("Bandicoot")])
    aln = aligner(coll)
    assert aln.moltype.label == "dna"


@pytest.mark.parametrize("moltype_1", ("text", "dna", "rna", "protein", "bytes"))
@pytest.mark.parametrize("moltype_2", ("text", "dna", "rna", "protein", "bytes"))
def test_smith_waterman_wrong_moltype(moltype_1, moltype_2):
    """If the moltypes differ between SW app and SequenceCollection,
    the SW moltype should be used
    """
    aligner = smith_waterman(moltype=moltype_1)
    coll = make_unaligned_seqs(
        data={"Human": "AUUCGAUGG", "Bandicoot": "AUUGCCCGAUGG"}, moltype=moltype_2
    )
    aln = aligner(coll)
    assert aln.moltype.label == moltype_1


def test_smith_waterman_raises(seqs):
    """SW should fail when given a SequenceCollection that deos not contain 2 seqs"""
    aligner = smith_waterman()
    coll = make_unaligned_seqs(
        data=[seqs.get_seq("Human"), seqs.get_seq("Bandicoot"), seqs.get_seq("Rhesus")],
        moltype="dna",
    )
    aln = aligner(coll)
    assert isinstance(aln, NotCompleted)

    coll = make_unaligned_seqs(data=[seqs.get_seq("Human")], moltype="dna")
    aln = aligner(coll)
    assert isinstance(aln, NotCompleted)


def test_aln_two():
    """correctly recapitulates known case"""
    orig = make_aligned_seqs(
        {
            "Ref": "CAGGAGAACAGAAACCCATTACTCACT",
            "Qu7": "CAGGA--ACAGA--CCCGTTA---ACT",
        },
        moltype="dna",
    )
    expect = orig.to_dict()
    aligner = align_app.align_to_ref(ref_seq="Ref")
    seqs = orig.degap()
    aln = aligner.main(seqs)
    assert aln.to_dict() == expect


def test_codon_incomplete(DATA_DIR):
    names = ["FlyingFox", "DogFaced", "FreeTaile"]
    aln = load_aligned_seqs(DATA_DIR / "brca1.fasta", moltype="dna")
    seqs = aln.take_seqs(names)[2700:3000].degap()
    aligner = align_app.progressive_align("codon")
    aln = aligner(seqs)
    assert aln  # will fail if aln is a NotCompleted instance
    # now make sure the resulting ungapped sequences are modulo 3
    seqs = aln.degap().to_dict().values()
    assert {len(s) % 3 for s in seqs} == {0}