1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
import itertools
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from numpy import log, polyval
from numpy.testing import assert_allclose
from cogent3 import (
DNA,
PROTEIN,
get_app,
load_aligned_seqs,
make_aligned_seqs,
make_unaligned_seqs,
open_data_store,
)
from cogent3.app.composable import WRITER, NotCompleted
from cogent3.app.dist import (
JACCARD_PDIST_POLY_COEFFS,
approx_jc69,
approx_pdist,
jaccard_dist,
)
from cogent3.evolve.fast_distance import DistanceMatrix, HammingPair, TN93Pair
from cogent3.maths.distance_transform import jaccard
_seqs1 = {
"Human": "GCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACT",
"Bandicoot": "NACTCATTAATGCTTGAAACCAGCAGTTTATTGTCCAAC",
"Rhesus": "GCCAGCTCATTACAGCATGAGAACAGTTTGTTACTCACT",
"FlyingFox": "GCCAGCTCTTTACAGCATGAGAACAGTTTATTATACACT",
}
_seqs2 = {
"Human": "ATGCGGCTCGCGGAGGCCGCGCTCGCGGAG",
"Mouse": "ATGCCCGGCGCCAAGGCAGCGCTGGCGGAG",
"Opossum": "ATGCCAGTGAAAGTGGCGGCGGTGGCTGAG",
}
_seqs3 = {
"Human": "ATGCGGCTCGCGGAGGCCGCGCTCGCGGAG",
"Mouse": "ATGCCCGGCGCCAAGGCAGCGCTGGCGGAG",
}
_seqs4 = {
"Human": "ATGCGGCTCGCGGAGGCCGCGCTCGCGGAG",
"Opossum": "ATGCCAGTGAAAGTGGCGGCGGTGGCTGAG",
}
_seqs5 = {"Human": "ASSLQHENSSLLLT", "Bandicoot": "XSLMLETSSLLSN"}
@pytest.fixture(scope="function")
def _seqs1_collection():
return make_unaligned_seqs(data=_seqs1, moltype="dna")
@pytest.fixture(scope="function")
def _seqs2_collection():
return make_unaligned_seqs(data=_seqs2, moltype="dna")
def _get_all_composable_apps():
out_dstore = open_data_store(":memory:", mode="w")
return [
get_app("align_to_ref"),
get_app("progressive_align", model="GY94"),
get_app("fixed_length", 100),
get_app("sample.min_length", 100),
get_app("write_seqs", out_dstore),
get_app(
"omit_bad_seqs",
),
get_app(
"omit_degenerates",
),
get_app("take_codon_positions", 1),
get_app(
"take_named_seqs",
),
get_app("trim_stop_codons", gc=1),
]
class FastSlowDistTests(TestCase):
seqs1 = make_unaligned_seqs(_seqs1, moltype=DNA)
seqs2 = make_unaligned_seqs(_seqs2, moltype=DNA)
seqs3 = make_unaligned_seqs(_seqs3, moltype=DNA)
seqs4 = make_unaligned_seqs(_seqs4, moltype=DNA)
seqs5 = make_unaligned_seqs(_seqs5, moltype=PROTEIN)
def test_init(self):
"""tests if fast_slow_dist can be initialised correctly"""
fast_slow_dist = get_app("fast_slow_dist", fast_calc="hamming", moltype="dna")
self.assertIsInstance(fast_slow_dist.fast_calc, HammingPair)
self.assertIsNone(fast_slow_dist._sm)
fast_slow_dist = get_app("fast_slow_dist", distance="TN93")
self.assertIsInstance(fast_slow_dist.fast_calc, TN93Pair)
self.assertEqual(fast_slow_dist._sm.name, "TN93")
fast_slow_dist = get_app("fast_slow_dist", distance="GTR")
self.assertEqual(fast_slow_dist._sm.name, "GTR")
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
self.assertEqual(fast_slow_dist._sm.name, "TN93")
self.assertIsNone(fast_slow_dist.fast_calc)
with self.assertRaises(ValueError):
fast_slow_dist = get_app(
"fast_slow_dist", distance="TN93", fast_calc="TN93", slow_calc="TN93"
)
with self.assertRaises(ValueError):
fast_slow_dist = get_app("fast_slow_dist", fast_calc="GTR")
with self.assertRaises(ValueError):
fast_slow_dist = get_app("fast_slow_dist", slow_calc="hamming")
def test_compatible_parameters(self):
"""tests if the input parameters are compatible with fast_slow_dist initialisation"""
for kwargs in (
dict(fast_calc="hamming", moltype="dna"),
dict(fast_calc="TN93"),
dict(slow_calc="GTR"),
dict(fast_calc="TN93"),
):
_ = get_app("fast_slow_dist", **kwargs)
def test_incompatible_parameters(self):
"""tests incompatible input parameters with fast_slow_dist initialisation"""
for kwargs in (
dict(fast_calc="hamming"),
dict(slow_calc="paralinear"),
dict(fast_calc="GTR"),
dict(slow_calc="hamming", moltype="dna"),
):
with self.assertRaises(ValueError):
_ = get_app("fast_slow_dist", **kwargs)
def test_composable_apps(self):
"""tests two composable apps"""
composable_apps = _get_all_composable_apps()
calc_dist = get_app("fast_slow_dist", fast_calc="hamming", moltype="dna")
for app in composable_apps:
if app.app_type is WRITER:
# cannot have a WRITER before a GENERIC
continue
# Compose two composable applications, there should not be exceptions.
got = app + calc_dist
self.assertIsInstance(got, type(calc_dist))
self.assertIs(got.input, app)
self.assertIsInstance(got._data_types, frozenset)
self.assertIsInstance(got._return_types, frozenset)
self.assertIs(got.input, app)
app.disconnect()
calc_dist.disconnect()
def test_est_dist_pair_slow(self):
"""tests the distance between seq pairs in aln"""
aligner = get_app(
"align_to_ref",
)
aln3 = aligner(self.seqs3)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="GTR")
got = fast_slow_dist(aln3).to_dict()
assert_allclose(got[("Human", "Mouse")], got[("Mouse", "Human")])
self.assertTrue(got[("Mouse", "Human")] >= 0)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
got = fast_slow_dist(aln3).to_dict()
assert_allclose(got[("Human", "Mouse")], got[("Mouse", "Human")])
self.assertTrue(got[("Mouse", "Human")] >= 0)
aligner = get_app("align_to_ref", ref_seq="Human")
aln3 = aligner(self.seqs3)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="GTR")
got = fast_slow_dist(aln3).to_dict()
assert_allclose(got[("Human", "Mouse")], got[("Mouse", "Human")])
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
got = fast_slow_dist(aln3).to_dict()
assert_allclose(got[("Human", "Mouse")], got[("Mouse", "Human")])
self.assertTrue(got[("Mouse", "Human")] >= 0)
aligner = get_app("align_to_ref", ref_seq="Mouse")
aln3 = aligner(self.seqs3)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="GTR")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Mouse", "Human")] >= 0)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Mouse", "Human")] >= 0)
aligner = get_app(
"align_to_ref",
)
aln3 = aligner(self.seqs4)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="GTR")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Human", "Opossum")] >= 0)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Human", "Opossum")] >= 0)
aligner = get_app("align_to_ref", ref_seq="Human")
aln3 = aligner(self.seqs4)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="GTR")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Human", "Opossum")] >= 0)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Human", "Opossum")] >= 0)
aligner = get_app("align_to_ref", ref_seq="Opossum")
aln3 = aligner(self.seqs4)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="GTR")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Human", "Opossum")] >= 0)
fast_slow_dist = get_app("fast_slow_dist", slow_calc="TN93")
got = fast_slow_dist(aln3).to_dict()
self.assertTrue(got[("Human", "Opossum")] >= 0)
# now as a process
proc = get_app(
"align_to_ref",
) + get_app("fast_slow_dist", fast_calc="hamming", moltype="dna")
got = proc(self.seqs1)
self.assertEqual(got[("Human", "Rhesus")], 1)
treestring = "(Human:0.2,Bandicoot:0.2)"
aligner = get_app("progressive_align", model="WG01", guide_tree=treestring)
_ = aligner(self.seqs5)
def test_composes_with_write_tabular(self):
"""correctly links to tabular"""
with TemporaryDirectory(dir=".") as dirname:
out_dstore = open_data_store(dirname, suffix="tsv", mode="w")
writer = get_app("write_tabular", out_dstore)
dist_calc = get_app("fast_slow_dist", distance="hamming", moltype="protein")
_ = dist_calc + writer
def test_functions_as_composable(self):
"""works as a composable app"""
from pathlib import Path
loader = get_app("load_aligned", moltype="dna", format="paml")
dist = get_app("fast_slow_dist", "hamming", moltype="dna")
with TemporaryDirectory(dir=".") as dirname:
dirname = Path(dirname)
out_dstore = open_data_store(dirname, suffix="tsv", mode="w")
writer = get_app("write_tabular", out_dstore)
proc = loader + dist + writer
_ = proc("data/brca1_5.paml")
output = dirname / "brca1_5.tsv"
self.assertTrue(output.exists())
@pytest.mark.parametrize("moltype", ("dna", "rna"))
def test_jaccard_dist(moltype):
"""jaccard_dist app should work for the simple case
("s1", "ACGTA"),
("s2", "----C"),
with k=2
s1 kmers = "AC", "CG", "GT", "TA"
s2 kmers = "AC", "CG", "GT", "TC"
J(A,B) = 1 - |A ∩ B| / |A ∪ B|
J(s1, s2) = 1 - |{"AC", "CG", "GT"}| / |{"AC", "CG", "GT", "TA", "TC"}|
J(s1, s2) = 1 - 3 / 5
J(s1, s2) = 0.4
"""
data = dict([("s1", "ACGTA"), ("s2", "ACGTC")])
collection = make_unaligned_seqs(data=data, moltype=moltype)
jdist_k2 = jaccard_dist(k=2)
dists = jdist_k2(collection)
assert dists[("s1", "s2")] == 0.4
assert dists[("s2", "s1")] == 0.4
assert dists[("s1", "s1")] == 0.0
assert dists[("s2", "s2")] == 0.0
def test_approx_pdist():
"""approx_pdist should work for the simple case
y = polyval(JACCARD_PDIST_POLY_COEFFS, x)
"""
data = dict(
[
(("s1", "s1"), 0.0),
(("s1", "s2"), 0.4),
(("s2", "s1"), 0.4),
(("s2", "s2"), 0.0),
]
)
dm = DistanceMatrix(data)
pdist_app = approx_pdist()
pdists = pdist_app(dm)
expect_diff = polyval(JACCARD_PDIST_POLY_COEFFS, 0.4)
expect_same = polyval(JACCARD_PDIST_POLY_COEFFS, 0.0)
assert pdists[("s1", "s2")] == expect_diff
assert pdists[("s2", "s1")] == expect_diff
assert pdists[("s1", "s1")] == expect_same
assert pdists[("s2", "s2")] == expect_same
@pytest.mark.parametrize("moltype", ("dna", "rna"))
def test_approx_jc69(moltype):
"""approx_jc69 should work the same as exact jc69 when given exact pdist"""
seq_data = dict([("s1", "ACGAA"), ("s2", "ACGAC")])
aln = make_aligned_seqs(data=seq_data, moltype=moltype)
expected = aln.distance_matrix(calc="jc69")
data = dict(
[
(("s1", "s1"), 0.0),
(("s1", "s2"), 1 / 5),
(("s2", "s1"), 1 / 5),
(("s2", "s2"), 0.0),
]
)
dm = DistanceMatrix(data)
jc_dist_app = approx_jc69()
got = jc_dist_app(dm)
assert got[("s1", "s2")] == expected[("s1", "s2")]
assert got[("s2", "s1")] == expected[("s2", "s1")]
assert got[("s1", "s1")] == expected[("s1", "s1")]
assert got[("s2", "s2")] == expected[("s2", "s2")]
@pytest.mark.parametrize("moltype", ("dna", "rna"))
def test_approx_pdist_same_diff(moltype):
"""comparisons between seqs with the same position different should be equal.
comparison between seqs with more positions different should yield a higher
measure than comparisons between seqs with fewer positions different.
NOTE: the coefficients used in Jaccard to Pdist fit
were generated using k=10, here I used k=3
("s1", "ACGTA"),
("s2", "----C"),
("s3", "----T"),
("s4", "---AT"),
"""
data = dict(
[
("s1", "ACGTA"),
("s2", "ACGTC"),
("s3", "ACGTT"),
("s4", "ACGAT"),
]
)
pdist_app = jaccard_dist(k=3) + approx_pdist()
collection = make_unaligned_seqs(data=data, moltype=moltype)
dists = pdist_app(collection)
# comparisons with one position different should be smaller than those with two
assert dists[("s1", "s2")] < dists[("s1", "s4")]
assert dists[("s1", "s3")] < dists[("s1", "s4")]
assert dists[("s1", "s2")] < dists[("s1", "s4")]
assert dists[("s2", "s3")] < dists[("s2", "s4")]
# both (s1 and s2) and (s2 and s3) have the same position different
assert dists[("s1", "s2")] == dists[("s1", "s3")]
def test_jaccard_dist_vals(_seqs1_collection):
"""values in the DistanceMatrix should match individually calculating the jaccard
distance for pairs of sequence.
"""
seqs = _seqs1_collection
jaccard_dist_app = jaccard_dist(k=10)
jdists = jaccard_dist_app(seqs)
names = jdists.names
for i, j in itertools.combinations(range(len(names)), 2):
seq1, seq2 = names[i], names[j]
got = jdists[(seq1, seq2)]
expect = jaccard(
set(seqs.get_seq(seq1).get_kmers(k=10, strict=True)),
set(seqs.get_seq(seq2).get_kmers(k=10, strict=True)),
)
assert_allclose(got, expect)
def test_jaccard_dist_one_seq(_seqs1_collection):
"""values in the DistanceMatrix should match individually calculating the jaccard
distance for pairs of sequence.
"""
seqs = _seqs1_collection.take_seqs(_seqs1_collection.names[0])
jaccard_dist_app = jaccard_dist(k=10)
got = jaccard_dist_app(seqs)
assert isinstance(got, NotCompleted)
assert got.origin == "jaccard_dist"
def test_approx_pdist_vals(_seqs1_collection):
"""values in the DistanceMatrix should match individually calculating the pdist
for pairs of sequence.
testing integration of jaccard_dist() + approx_pdist() is identical to
step-by-step calculation
"""
seqs = _seqs1_collection
jaccard_dist_app = jaccard_dist(k=10)
jdists = jaccard_dist_app(seqs)
pdist_app = jaccard_dist(k=10) + approx_pdist()
pdists = pdist_app(seqs)
names = pdists.names
for i, j in itertools.combinations(range(len(names)), 2):
seq1, seq2 = names[i], names[j]
got = pdists[(seq1, seq2)]
expect = polyval(JACCARD_PDIST_POLY_COEFFS, jdists[(seq1, seq2)])
assert got == expect
def test_approx_jc69_vals(_seqs1_collection):
"""values in the DistanceMatrix should match individually calculating the jc distance
for pairs of sequence.
testing integration of jaccard_dist() + approx_pdist() + approx_jc69() is identical to
step-by-step calculation
"""
seqs = _seqs1_collection
jaccard_dist_app = jaccard_dist(k=10)
jdists = jaccard_dist_app(seqs)
names = jdists.names
pdist_app = approx_pdist()
pdists = pdist_app(jdists)
jc_app = jaccard_dist(k=10) + approx_pdist() + approx_jc69()
jc_dists = jc_app(seqs)
for i, j in itertools.combinations(range(len(names)), 2):
seq1, seq2 = names[i], names[j]
got = jc_dists[(seq1, seq2)]
expect = -3 / 4 * log(1 - 4 / 3 * pdists[(seq1, seq2)])
assert got == expect
def test_symmetry_of_dists(DATA_DIR):
"""distances are symmetric"""
seqs = load_aligned_seqs(DATA_DIR / "primate_brca1.fasta", moltype="dna")
dists = seqs.distance_matrix(calc="pdist")
app = approx_jc69()
got = app(dists)
assert_allclose(got.array, got.array.T)
def test_gap_dist():
app = get_app("gap_dist", gap_insert=10, gap_extend=1)
# two sequences share a gap
data = {
"a": "TG----AATATGT------GAAAGAG",
"b": "TTGAAGAATATGT------GAAAGAG",
"c": "CTGAAGAACCTGTGAAAGTGAAAGAG",
}
aln = make_aligned_seqs(data, moltype="dna", array_align=True)
expect = {
("a", "b"): 14.0, # one gap diff of size 4
("a", "c"): 30.0,
("b", "c"): 16.0,
}
expect = DistanceMatrix(expect)
dmat = app.main(aln)
assert dmat.to_dict() == expect.to_dict()
# shared gap actually not shared, 3 events
data = {
"a": "TG----AATATGTA-----GAAAGAG",
"b": "TTGAAGAATATGTA------AAAGAG",
"c": "CTGAAGAACCTGTGAAAGTGAAAGAG",
}
aln = make_aligned_seqs(data, moltype="dna", array_align=True)
expect = {
("a", "b"): 45.0, # 3 gaps diff of size 15
("a", "c"): 29.0,
("b", "c"): 16.0,
}
expect = DistanceMatrix(expect)
dmat = app.main(aln)
assert dmat.to_dict() == expect.to_dict()
# additional gaps on either side of shared gap is two events
data = {
"a": "G--AG----A",
"b": "TGGAGT--GA",
"c": "TGGAGTGTGA",
}
aln = make_aligned_seqs(data, moltype="dna", array_align=True)
expect = {
("a", "b"): 38, # 3 gaps diff of size 8
("a", "c"): 26.0,
("b", "c"): 12.0,
}
expect = DistanceMatrix(expect)
dmat = app.main(aln)
assert dmat.to_dict() == expect.to_dict()
data = {"a": "AAGAA-A", "b": "-ATAATG", "c": "C-TGG-G"}
aln = make_aligned_seqs(data, moltype="dna", array_align=True)
expect = {
("a", "b"): 22.0, # 2 gaps diff of size 2
("a", "c"): 11.0,
("b", "c"): 33.0, # 3 gaps diff of size 2
}
expect = DistanceMatrix(expect)
dmat = app.main(aln)
assert dmat.to_dict() == expect.to_dict()
|