File: test_tree.py

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (266 lines) | stat: -rw-r--r-- 9,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import pathlib

from unittest import TestCase

import pytest

from cogent3 import DNA, load_aligned_seqs, make_aligned_seqs, make_tree
from cogent3.app import dist
from cogent3.app import tree as tree_app
from cogent3.app.composable import NotCompleted
from cogent3.core.tree import PhyloNode, TreeNode
from cogent3.evolve.fast_distance import DistanceMatrix


DATA_DIR = pathlib.Path(__file__).parent.parent / "data"


class TestTree(TestCase):
    def test_scale_tree_lengths(self):
        """correctly scales tree lengths"""
        with self.assertRaises(AssertionError):
            _ = tree_app.scale_branches(nuc_to_codon=True, codon_to_nuc=True)

        tree = make_tree(treestring="(a:3,b:6,c:9)")
        scale_to_codon = tree_app.scale_branches(nuc_to_codon=True)
        d = scale_to_codon(tree)
        got = {e.name: e.length for e in d.get_edge_vector(include_root=False)}
        expect = {"a": 1.0, "b": 2.0, "c": 3.0}
        self.assertEqual(got, expect)

        scale_from_codon = tree_app.scale_branches(codon_to_nuc=True)
        d = scale_from_codon(d)
        got = {e.name: e.length for e in d.get_edge_vector(include_root=False)}
        expect = {"a": 3.0, "b": 6.0, "c": 9.0}
        self.assertEqual(got, expect)

        by_scalar = tree_app.scale_branches(scalar=0.5)
        d = by_scalar(tree)
        got = {e.name: e.length for e in d.get_edge_vector(include_root=False)}
        expect = {"a": 6.0, "b": 12.0, "c": 18.0}
        self.assertEqual(got, expect)

        # handle case where a length is not defined, setting to minimum
        min_length = tree_app.scale_branches(min_length=66)
        tree = make_tree(treestring="(a:3,b:6,c)")
        new = min_length(tree)
        got = {e.name: e.length for e in new.get_edge_vector(include_root=False)}
        expect = {"a": 3.0, "b": 6.0, "c": 66.0}
        self.assertEqual(got, expect)

    def test_quick_tree(self):
        """correctly calc a nj tree"""
        path = DATA_DIR / "brca1_5.paml"
        aln = load_aligned_seqs(path, moltype=DNA)
        fast_slow_dist = dist.fast_slow_dist(fast_calc="hamming", moltype="dna")
        dist_matrix = fast_slow_dist(aln)
        quick1 = tree_app.quick_tree()
        tree1 = quick1(dist_matrix)
        self.assertEqual(set(tree1.get_tip_names()), set(aln.names))

    def test_composable_apps(self):
        """checks the ability of these two apps(fast_slow_dist and quick_tree) to communicate"""
        path = DATA_DIR / "brca1_5.paml"
        aln1 = load_aligned_seqs(path, moltype=DNA)
        calc_dist = dist.fast_slow_dist(fast_calc="hamming", moltype="dna")
        quick = tree_app.quick_tree(drop_invalid=False)
        proc = calc_dist + quick
        self.assertEqual(
            str(proc),
            "fast_slow_dist(distance=None, moltype='dna', "
            "fast_calc='hamming',\nslow_calc=None) + quick_tree("
            "drop_invalid=False)",
        )
        self.assertIsInstance(proc, tree_app.quick_tree)
        self.assertIsInstance(proc.input, dist.fast_slow_dist)

        tree1 = proc(aln1)
        self.assertIsInstance(tree1, PhyloNode)
        self.assertIsNotNone(tree1.children)
        self.assertEqual(set(tree1.get_tip_names()), set(aln1.names))

        # tests when distances contain None
        data = dict(
            seq1="AGGGGGGGGGGCCCCCCCCCCCCCCCCCGGGGGGGGGGGGGGGCGGTTTTTTTTTTTTTTTTTT",
        )
        aln2 = make_aligned_seqs(data=data, moltype=DNA)
        tree2 = proc(aln2)
        self.assertIsInstance(tree2, NotCompleted)

    def test_quick_tree_taking_distance_matrix(self):
        """quick_tree should take a distance matrix"""
        quick_tree = tree_app.quick_tree()
        data = {
            ("ABAYE2984", "Avin_42730"): 0.638,
            ("Atu3667", "Avin_42730"): 2.368,
            ("Avin_42730", "ABAYE2984"): 0.638,
            ("Avin_42730", "Atu3667"): 2.368,
            ("Avin_42730", "BAA10469"): 1.85,
            ("BAA10469", "Avin_42730"): 1.85,
        }

        darr = DistanceMatrix(data)
        tree = quick_tree(darr)
        self.assertIsInstance(tree, PhyloNode)
        self.assertIsNotNone(tree.children)
        self.assertEqual(
            set(tree.get_tip_names()), set.union(*(set(tup) for tup in data))
        )

        data = {
            ("DogFaced", "FlyingFox"): 0.05,
            ("DogFaced", "FreeTaile"): 0.14,
            ("DogFaced", "LittleBro"): 0.16,
            ("DogFaced", "TombBat"): 0.15,
            ("FlyingFox", "DogFaced"): 0.05,
            ("FlyingFox", "FreeTaile"): 0.12,
            ("FlyingFox", "LittleBro"): 0.13,
            ("FlyingFox", "TombBat"): 0.14,
            ("FreeTaile", "DogFaced"): 0.14,
            ("FreeTaile", "FlyingFox"): 0.12,
            ("FreeTaile", "LittleBro"): 0.09,
            ("FreeTaile", "TombBat"): 0.1,
            ("LittleBro", "DogFaced"): 0.16,
            ("LittleBro", "FlyingFox"): 0.13,
            ("LittleBro", "FreeTaile"): 0.09,
            ("LittleBro", "TombBat"): 0.12,
            ("TombBat", "DogFaced"): 0.15,
            ("TombBat", "FlyingFox"): 0.14,
            ("TombBat", "FreeTaile"): 0.1,
            ("TombBat", "LittleBro"): 0.12,
        }
        darr = DistanceMatrix(data)
        tree = quick_tree(darr)
        self.assertIsInstance(tree, PhyloNode)
        self.assertIsNotNone(tree.children)
        self.assertEqual(
            set(tree.get_tip_names()), set.union(*(set(tup) for tup in data))
        )

        data = {
            ("ABAYE2984", "Atu3667"): 0.25,
            ("ABAYE2984", "Avin_42730"): 0.638,
            ("ABAYE2984", "BAA10469"): None,
            ("Atu3667", "ABAYE2984"): 0.25,
            ("Atu3667", "Avin_42730"): 2.368,
            ("Atu3667", "BAA10469"): 0.25,
            ("Avin_42730", "ABAYE2984"): 0.638,
            ("Avin_42730", "Atu3667"): 2.368,
            ("Avin_42730", "BAA10469"): 1.85,
            ("BAA10469", "ABAYE2984"): 0.25,
            ("BAA10469", "Atu3667"): 0.25,
            ("BAA10469", "Avin_42730"): 1.85,
        }
        darr = DistanceMatrix(data)
        tree = quick_tree(darr)
        self.assertIsInstance(tree, PhyloNode)
        self.assertIsNotNone(tree.children)
        self.assertEqual(
            set(tree.get_tip_names()), set.union(*(set(tup) for tup in data))
        )

        data = {
            ("ABAYE2984", "Atu3667"): None,
            ("ABAYE2984", "Avin_42730"): 0.638,
            ("ABAYE2984", "BAA10469"): None,
            ("Atu3667", "ABAYE2984"): None,
            ("Atu3667", "Avin_42730"): 2.368,
            ("Atu3667", "BAA10469"): None,
            ("Avin_42730", "ABAYE2984"): 0.638,
            ("Avin_42730", "Atu3667"): 2.368,
            ("Avin_42730", "BAA10469"): 1.85,
            ("BAA10469", "ABAYE2984"): None,
            ("BAA10469", "Atu3667"): None,
            ("BAA10469", "Avin_42730"): 1.85,
        }

        darr = DistanceMatrix(data)
        # must explicitly call main() method to avoid error trapping by decorator
        with self.assertRaises(KeyError):
            quick_tree.main(darr)
        # when distance_matrix is None after dropping invalid
        with self.assertRaises(ValueError):
            quick_tree = tree_app.quick_tree(drop_invalid=True)
            quick_tree.main(darr)

        data = {
            ("DogFaced", "FlyingFox"): 0.05,
            ("DogFaced", "FreeTaile"): 0.14,
            ("DogFaced", "LittleBro"): 0.16,
            ("DogFaced", "TombBat"): 0.15,
            ("FlyingFox", "DogFaced"): 0.05,
            ("FlyingFox", "FreeTaile"): 0.12,
            ("FlyingFox", "LittleBro"): 0.13,
            ("FlyingFox", "TombBat"): 0.14,
            ("FreeTaile", "DogFaced"): 0.14,
            ("FreeTaile", "FlyingFox"): 0.12,
            ("FreeTaile", "LittleBro"): 0.09,
            ("FreeTaile", "TombBat"): 0.1,
            ("LittleBro", "DogFaced"): 0.16,
            ("LittleBro", "FlyingFox"): 0.13,
            ("LittleBro", "FreeTaile"): 0.09,
            ("LittleBro", "TombBat"): 0.12,
            ("TombBat", "DogFaced"): 0.15,
            ("TombBat", "FlyingFox"): 0.14,
            ("TombBat", "FreeTaile"): 0.1,
            ("TombBat", "LittleBro"): 0.12,
        }
        darr = DistanceMatrix(data)
        tree = quick_tree(darr)
        self.assertIsInstance(tree, PhyloNode)
        self.assertIsNotNone(tree.children)
        self.assertEqual(
            set(tree.get_tip_names()), set.union(*(set(tup) for tup in data))
        )

        data = {"a": {"b": 0.1, "a": 0.0}, "b": {"a": 0.1, "b": 0.0}}
        darr = DistanceMatrix(data)
        tree = quick_tree(darr)
        self.assertEqual(
            set(tree.get_tip_names()), set.union(*(set(tup) for tup in data))
        )

    def test_uniformize_tree(self):
        """equivalent topologies should be the same"""
        a = make_tree(treestring="(a,(b,c),(d,e))")
        b = make_tree(treestring="(e,d,(a,(b,c)))")
        make_uniform = tree_app.uniformize_tree(
            root_at="c", ordered_names=list("abcde")
        )
        u_a = make_uniform(a).get_newick()
        u_b = make_uniform(b).get_newick()
        self.assertTrue(u_a == u_b)
        # but different ones different
        c = make_tree(treestring="(e,c,(a,(b,d)))")
        u_c = make_uniform(c).get_newick()
        self.assertFalse(u_a == u_c)


def test_interpret_tree_arg_none():
    assert tree_app.interpret_tree_arg(None) is None


@pytest.mark.parametrize(
    "tree",
    (
        DATA_DIR / "brca1_5.tree",
        str(DATA_DIR / "brca1_5.tree"),
        "(a,b,c)",
        make_tree(tip_names=["a", "b", "c"]),
    ),
)
def test_interpret_tree_arg_valid(tree):
    got = tree_app.interpret_tree_arg(tree)
    assert isinstance(got, TreeNode)


@pytest.mark.parametrize(
    "tree",
    (
        1,
        make_tree,
    ),
)
def test_interpret_tree_arg_invalid(tree):
    with pytest.raises(TypeError):
        tree_app.interpret_tree_arg(tree)