1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
from unittest import TestCase
import numpy
import pytest
from cogent3 import ASCII, DNA, get_moltype, make_aligned_seqs
from cogent3.core.alignment import Alignment, SequenceCollection
from cogent3.core.annotation import Feature
from cogent3.core.annotation_db import BasicAnnotationDb, GffAnnotationDb
# Complete version of manipulating sequence annotations
from cogent3.util.deserialise import deserialise_object
class FeaturesTest(TestCase):
"""Tests of features in core"""
def setUp(self):
# A Sequence with a couple of exons on it.
self.s = DNA.make_seq(
"AAGAAGAAGACCCCCAAAAAAAAAATTTTTTTTTTAAAAAAAAAAAAA", name="Orig"
)
self.exon1 = self.s.add_feature(biotype="exon", name="fred", spans=[(10, 15)])
self.exon2 = self.s.add_feature(biotype="exon", name="trev", spans=[(30, 40)])
self.nested_feature = self.s.add_feature(
biotype="repeat", name="bob", spans=[(12, 17)]
)
def test_exon_extraction(self):
"""exon feature used to slice or directly access sequence"""
# The corresponding sequence can be extracted either with
# slice notation or by asking the feature to do it,
# since the feature knows what sequence it belongs to.
self.assertEqual(str(self.s[self.exon1]), "CCCCC")
self.assertEqual(str(self.exon1.get_slice()), "CCCCC")
def test_get_features(self):
"""correctly identifies all features of a given type"""
# Usually the only way to get a Feature object like exon1
# is to ask the sequence for it. There is one method for querying
# annotations by type and optionally by name:
exons = list(self.s.get_features(biotype="exon"))
assert str(exons).startswith(
"[Feature(seqid='Orig', biotype='exon', name='fred', map=[10:15]/48, parent=DnaSequence"
)
def test_union(self):
"""combines multiple features into one"""
# To construct a pseudo-feature covering (or excluding)
# multiple features, use get_region_covering_all:
exons = list(self.s.get_features(biotype="exon"))
exon1 = exons.pop(0)
combined = exon1.union(exons)
self.assertEqual(str(combined.get_slice()), "CCCCCTTTTTAAAAA")
def test_shadow(self):
"""combines multiple features into shadow"""
# To construct a pseudo-feature covering (or excluding)
# multiple features, use get_region_covering_all:
exons = list(self.s.get_features(biotype="exon"))
expect = str(
self.s[: exons[0].map.start]
+ self.s[exons[0].map.end : exons[1].map.start]
+ self.s[exons[1].map.end :]
)
exon1 = exons.pop(0)
shadow = exon1.union(exons).shadow()
assert str(shadow.get_slice()) == expect
def test_annotate_matches_to(self):
"""annotate_matches_to attaches annotations correctly to a Sequence"""
seq = DNA.make_seq("TTCCACTTCCGCTT", name="x")
pattern = "CCRC"
annot = seq.annotate_matches_to(
pattern=pattern, biotype="domain", name="fred", allow_multiple=True
)
self.assertEqual([a.get_slice() for a in annot], ["CCAC", "CCGC"])
annot = seq.annotate_matches_to(
pattern=pattern, biotype="domain", name="fred", allow_multiple=False
)
self.assertEqual(len(annot), 1)
fred = annot[0].get_slice()
self.assertEqual(str(fred), "CCAC")
# For Sequence objects of a non-IUPAC MolType, annotate_matches_to
# should return an empty annotation.
seq = ASCII.make_seq(seq="TTCCACTTCCGCTT")
annot = seq.annotate_matches_to(
pattern=pattern, biotype="domain", name="fred", allow_multiple=False
)
self.assertEqual(annot, [])
def test_copy_annotations():
"""copying features from a db"""
aln = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--CCCT"]], array_align=False
)
db = GffAnnotationDb()
db.add_feature(seqid="y", biotype="exon", name="A", spans=[(5, 8)])
aln.copy_annotations(db)
feat = list(aln.get_features(seqid="y", biotype="exon"))[0]
assert feat.get_slice().to_dict() == dict(x="AAA", y="CCT")
def test_copy_annotations_onto_seq():
"""copying features onto a sequence"""
aln = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--CCCT"]], array_align=False
)
db = BasicAnnotationDb()
db.add_feature(seqid="y", biotype="exon", name="A", spans=[(5, 8)])
y = aln.get_seq("y")
y.copy_annotations(db)
feat = list(aln.get_features(seqid="y", biotype="exon"))[0]
assert feat.get_slice().to_dict() == dict(x="AAA", y="CCT")
def test_feature_residue():
"""seq features on alignment operate in sequence coordinates"""
# In this case, only those residues included within the feature are
# covered - note the omission of the T in y opposite the gap in x.
aln = make_aligned_seqs(
data=[["x", "C-CCCAAAAA"], ["y", "-T----TTTT"]],
moltype=DNA,
array_align=False,
)
db = aln.annotation_db
assert str(aln), ">x\nC-CCCAAAAA\n>y\n-T----TTTT\n"
db.add_feature(seqid="x", biotype="exon", name="ex1", spans=[(0, 4)])
aln_exons = list(aln.get_features(seqid="x", biotype="exon"))
assert "biotype='exon', name='ex1', map=[0:1, 2:5]/10" in str(aln_exons)
exon = aln_exons[0]
exon_seq = exon.get_slice()
assert exon_seq.to_dict() == dict(x="CCCC", y="----")
# Feature.as_one_span(), is applied to the exon that
# straddles the gap in x. The result is we preserve that feature.
exon_full_aln = aln_exons[0].as_one_span()
assert exon_full_aln.get_slice().to_dict() == dict(x="C-CCC", y="-T---")
# These properties also are consistently replicated with reverse
# complemented sequences.
aln_rc = aln.rc()
rc_exons = list(aln_rc.get_features(biotype="exon"))[0]
assert rc_exons.get_slice().to_dict() == dict(x="CCCC", y="----")
assert rc_exons.as_one_span().get_slice().to_dict() == dict(x="C-CCC", y="-T---")
@pytest.fixture(scope="function")
def ann_seq():
# A Sequence with a couple of exons on it.
s = DNA.make_seq("AAGAAGAAGACCCCCAAAAAAAAAATTTTTTTTTTAAAAAAAAAAAAA", name="Orig")
s.add_feature(biotype="gene", name="a-gene", spans=[(10, 40)])
s.add_feature(
biotype="exon", name="fred", spans=[(10, 15), (30, 40)], parent_id="a-gene"
)
return s
def test_get_features_no_matches(ann_seq):
"""get_features returns empty list if no matches"""
# If the sequence does not have a matching feature
# you get back an empty list, and slicing the sequence
# with that returns a sequence of length 0.
dont_exist = list(ann_seq.get_features(biotype="dont_exist"))
assert dont_exist == []
def _add_features(obj, on_alignment):
kwargs = dict(on_alignment=on_alignment) if on_alignment else {}
obj.add_feature(biotype="CDS", name="GG", spans=[(0, 10)], strand="+", **kwargs)
obj.add_feature(
biotype="exon",
name="child",
spans=[(3, 6)],
strand="+",
parent_id="GG",
**kwargs,
)
obj.add_feature(
biotype="exon",
name="not-child",
spans=[(3, 6)],
strand="+",
parent_id="AA",
**kwargs,
)
return obj
def test_feature_query_child_seq():
s = DNA.make_seq("AAAGGGAAAA", name="s1")
s = _add_features(s, on_alignment=False)
gene = list(s.get_features(biotype="CDS"))[0]
child = list(gene.get_children())
assert len(child) == 1
child = child[0]
assert child.name == "child"
assert str(child.get_slice()) == str(s[3:6])
def test_feature_query_parent_seq():
s = DNA.make_seq("AAAGGGAAAA", name="s1")
s = _add_features(s, on_alignment=False)
exon = list(s.get_features(name="child"))[0]
parent = list(exon.get_parent())
assert len(parent) == 1
parent = parent[0]
assert parent.name == "GG"
assert str(parent.get_slice()) == str(s[0:10])
def test_feature_query_child_aln():
aln = make_aligned_seqs(
data=[["x", "-AAAGGGGGAAC-CT"], ["y", "TTTT--TTTTAGGGA"]],
array_align=False,
moltype="dna",
)
aln = _add_features(aln, on_alignment=True)
gene = list(aln.get_features(biotype="CDS"))[0]
child = list(gene.get_children())
assert len(child) == 1
child = child[0]
assert child.name == "child"
assert child.get_slice().to_dict() == aln[3:6].to_dict()
def test_feature_query_parent_aln():
aln = make_aligned_seqs(
data=[["x", "-AAAGGGGGAAC-CT"], ["y", "TTTT--TTTTAGGGA"]],
array_align=False,
moltype="dna",
)
aln = _add_features(aln, on_alignment=True)
child = list(aln.get_features(name="child"))[0]
parent = list(child.get_parent())
assert len(parent) == 1
parent = parent[0]
assert parent.name == "GG"
assert parent.get_slice().to_dict() == aln[0:10].to_dict()
def test_aln_feature_lost_spans():
"""features outside the sequence should not be returned"""
db = GffAnnotationDb(data=[])
db.add_feature(seqid="y", biotype="repeat", name="A", spans=[(12, 14)])
# If the sequence is shorter, again you get a lost span.
aln = make_aligned_seqs(
data={"x": "-AAAAAAAAA", "y": "TTTT--TTTT"}, array_align=False
)
aln.annotation_db = db
copied = list(aln.get_features(seqid="y", biotype="repeat"))
assert not copied
def test_terminal_gaps():
"""features in cases of terminal gaps"""
# We consider cases where there are terminal gaps.
db = GffAnnotationDb()
feat = dict(seqid="x", biotype="exon", name="fred", spans=[(3, 8)])
db.add_feature(**feat)
aln = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "------TTTT"]], array_align=False
)
aln.annotation_db = db
aln_exons = list(aln.get_features(seqid="x", biotype="exon"))
assert "biotype='exon', name='fred', map=[4:9]/10" in str(aln_exons)
assert aln_exons[0].get_slice().to_dict() == dict(x="AAAAA", y="--TTT")
aln = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--T---"]], array_align=False
)
aln.annotation_db = db
aln_exons = list(aln.get_features(seqid="x", biotype="exon"))
assert aln_exons[0].get_slice().to_dict() == dict(x="AAAAA", y="--T--")
def test_annotated_region_masks():
"""masking a sequence with specific features"""
# Annotated regions can be masked (observed sequence characters
# replaced by another), either through the sequence on which they
# reside or by projection from the alignment. Note that mask_char must
# be a valid character for the sequence MolType. Either the features
# (multiple can be named), or their shadow, can be masked.
# We create an alignment with a sequence that has two different annotation types.
orig_data = {"x": "C-CCCAAAAAGGGAA", "y": "-T----TTTTG-GTT"}
db = GffAnnotationDb()
db.add_feature(seqid="x", biotype="exon", name="norwegian", spans=[(0, 4)])
db.add_feature(
biotype="repeat",
name="blue",
spans=[(9, 12)],
seqid="x",
)
db.add_feature(seqid="y", biotype="repeat", name="frog", spans=[(5, 7)])
aln = make_aligned_seqs(data=orig_data, array_align=False, moltype="dna")
aln.annotation_db = db
assert aln.to_dict() == {"x": "C-CCCAAAAAGGGAA", "y": "-T----TTTTG-GTT"}
x = aln.get_seq("x")
y = aln.get_seq("y")
exon = list(x.get_features(biotype="exon"))[0]
assert str(exon.get_slice()) == "CCCC"
repeat_x = list(x.get_features(biotype="repeat"))[0]
assert str(repeat_x.get_slice()) == "GGG"
repeat_y = list(y.get_features(biotype="repeat"))[0]
assert str(repeat_y.get_slice()) == "GG"
# Each sequence should correctly mask either the single feature,
# it's shadow, or the multiple features, or shadow.
assert (
str(aln.get_seq("x").with_masked_annotations("exon", mask_char="?"))
== "????AAAAAGGGAA"
)
assert (
str(
aln.get_seq("x").with_masked_annotations("exon", mask_char="?", shadow=True)
)
== "CCCC??????????"
)
assert (
str(aln.get_seq("x").with_masked_annotations(["exon", "repeat"], mask_char="?"))
== "????AAAAA???AA"
)
assert (
str(
aln.get_seq("x").with_masked_annotations(
["exon", "repeat"], mask_char="?", shadow=True
)
)
== "CCCC?????GGG??"
)
assert (
str(aln.get_seq("y").with_masked_annotations("exon", mask_char="?"))
== "TTTTTGGTT"
)
assert (
str(aln.get_seq("y").with_masked_annotations("repeat", mask_char="?"))
== "TTTTT??TT"
)
assert (
str(
aln.get_seq("y").with_masked_annotations(
"repeat", mask_char="?", shadow=True
)
)
== "?????GG??"
)
# The same methods can be applied to annotated Alignment's.
assert aln.with_masked_annotations("exon", mask_char="?").to_dict() == {
"x": "?-???AAAAAGGGAA",
"y": "-T----TTTTG-GTT",
}
assert aln.with_masked_annotations(
"exon", mask_char="?", shadow=True
).to_dict() == {"x": "C-CCC??????????", "y": "-?----?????-???"}
assert aln.with_masked_annotations("repeat", mask_char="?").to_dict() == {
"x": "C-CCCAAAAA???AA",
"y": "-T----TTTT?-?TT",
}
assert aln.with_masked_annotations(
"repeat", mask_char="?", shadow=True
).to_dict() == {"x": "?-????????GGG??", "y": "-?----????G-G??"}
assert aln.with_masked_annotations(["repeat", "exon"], mask_char="?").to_dict() == {
"x": "?-???AAAAA???AA",
"y": "-T----TTTT?-?TT",
}
assert aln.with_masked_annotations(["repeat", "exon"], shadow=True).to_dict() == {
"x": "C-CCC?????GGG??",
"y": "-?----????G-G??",
}
def test_nested_annotated_region_masks():
"""masking a sequence with specific features when nested annotations"""
db = GffAnnotationDb()
db.add_feature(seqid="x", biotype="gene", name="norwegian", spans=[(0, 4)])
db.add_feature(seqid="x", biotype="repeat", name="blue", spans=[(1, 3)])
db.add_feature(seqid="y", biotype="repeat", name="frog", spans=[(1, 4)])
aln = make_aligned_seqs(
data=[["x", "C-GGCAAAAATTTAA"], ["y", "-T----TTTTG-GTT"]], array_align=False
)
aln.annotation_db = db
gene = list(aln.get_seq("x").get_features(biotype="gene"))[0]
assert str(gene.get_slice()) == "CGGC"
# evaluate the sequence directly
masked = str(aln.get_seq("x").with_masked_annotations("repeat", mask_char="?"))
assert masked == "C??CAAAAATTTAA"
exon = list(aln.get_seq("y").get_features(biotype="repeat", name="frog"))[0]
assert str(exon.get_slice()) == "TTT"
# evaluate the sequence directly
masked = str(aln.get_seq("y").with_masked_annotations("repeat", mask_char="?"))
assert masked == "T???TGGTT"
masked = aln.with_masked_annotations("gene", mask_char="?")
got = masked.to_dict()
assert got["x"] == "?-???AAAAATTTAA"
assert got["y"] == "-T----TTTTG-GTT"
def test_feature_from_alignment():
"""seq features obtained from the alignment"""
# we no longer support copying annotations individually
# nor do we provide a mechanism for copying annotations from one
# sequence to another
# Sequence features can be accessed via a containing Alignment:
db = GffAnnotationDb()
aln = make_aligned_seqs(
data={"x": "-AAAAAAAAA", "y": "TTTT--TTTT"}, array_align=False
)
db.add_feature(seqid="x", biotype="exon", name="fred", spans=[(3, 8)])
aln.annotation_db = db
aln_exons = list(aln.get_features(seqid="x", biotype="exon"))
assert len(aln_exons) == 1
aln_exons = aln_exons[0]
# But these will be returned as **alignment**
# features with locations in alignment coordinates.
assert aln[aln_exons].to_dict() == {"x": "AAAAA", "y": "--TTT"}
# Similarly alignment features can be projected onto the aligned sequences,
# where they may end up falling across gaps:
exons = aln.get_projected_features(seqid="y", biotype="exon")
assert len(exons) == 1
assert str(aln.get_seq("y")[exons[0].map.without_gaps()]), "TTT"
assert "biotype='exon', name='fred', map=[-2-, 4:7]/8" in str(exons[0])
def test_nested_get_slice():
"""check the get_slice method works on nested annotations"""
s = DNA.make_seq("AAGAAGAAGACCCCCAAAAAAAAAATTTTTTTTTTAAAAAAAAAAAAA", name="Orig")
ex = s.add_feature(biotype="exon", name="fred", spans=[(10, 20)])
s.add_feature(biotype="exon", name="trev", spans=[(30, 40)])
s.add_feature(biotype="repeat", name="bob", spans=[(12, 17)], parent_id="fred")
f = list(ex.get_children())[0]
assert str(s[f]) == str(s[12:17])
def test_roundtrip_annotated_seq():
"""should work for a seq that has been reverse complemented"""
# the key that exposed the bug was a gap in the middle of the sequence
seq = DNA.make_seq(
"AAAGGGGGAACCT",
name="x",
)
seq.add_feature(biotype="exon", name="E1", spans=[(3, 8)])
seq.add_feature(biotype="exon", name="E2", spans=[(10, 13)])
rseq = deserialise_object(seq.to_json())
orig_annots = {a.name: str(a.get_slice()) for a in seq.get_features()}
got_annots = {a.name: str(a.get_slice()) for a in rseq.get_features()}
assert got_annots == orig_annots
def test_roundtrip_rc_annotated_align():
"""should work for an alignment that has been reverse complemented"""
# the key that exposed the bug was a gap in the middle of the sequence
aln = make_aligned_seqs(
data=[["x", "-AAAGGGGGAAC-CT"], ["y", "TTTT--TTTTAGGGA"]],
array_align=False,
moltype="dna",
)
aln.get_seq("x").add_feature(biotype="exon", name="E1", spans=[(3, 8)])
aln.get_seq("x").add_feature(biotype="exon", name="E2", spans=[(10, 13)])
raln = aln.rc()
assert len(aln.annotation_db) == len(raln.annotation_db)
json = raln.to_json()
got = deserialise_object(json)
assert got.to_rich_dict() == raln.to_rich_dict()
orig_annots = {a.name: a.get_slice() for a in raln.get_features()}
got_annots = {a.name: a.get_slice() for a in got.get_features()}
assert got_annots == orig_annots
def test_masking_strand_agnostic_seq():
db = GffAnnotationDb()
db.add_feature(
seqid="plus", biotype="CDS", name="gene", spans=[(2, 6), (10, 15), (25, 35)]
)
# Annotations should be correctly masked,
# whether the sequence has been reverse complemented or not.
# We use the plus/minus strand CDS containing sequences created above.
plus = DNA.make_seq("AAGGGGAAAACCCCCAAAAAAAAAATTTTTTTTTTAAA", name="plus")
plus.annotation_db = db
masked = plus.with_masked_annotations("CDS")
assert len(masked) == len(plus)
assert str(masked) == "AA????AAAA?????AAAAAAAAAA??????????AAA"
minus = plus.rc()
masked = minus.with_masked_annotations("CDS")
assert len(masked) == len(minus)
assert str(masked) == "TTT??????????TTTTTTTTTT?????TTTT????TT"
def test_masking_strand_agnostic_aln():
db = GffAnnotationDb()
db.add_feature(
seqid="x", biotype="CDS", name="gene", spans=[(2, 6), (10, 15), (25, 35)]
)
aln = make_aligned_seqs(
{
"x": "AAGGGGAAAACCCCCAAAAAAAAAATTTTTTTTTTAAA",
"y": "AAGGGGAAAACCCCCGGGGGGGGGGTTTTTTTTTTAAA",
},
moltype="dna",
array_align=False,
)
aln.annotation_db = db
masked = aln.with_masked_annotations("CDS")
assert masked.to_dict() == {
"x": "AA????AAAA?????AAAAAAAAAA??????????AAA",
"y": str(aln.named_seqs["y"]),
}
rc = aln.rc()
masked = rc.with_masked_annotations("CDS")
assert masked.to_dict() == {
"x": "TTT??????????TTTTTTTTTT?????TTTT????TT",
"y": str(rc.named_seqs["y"]),
}
def test_roundtrip_json():
"""features can roundtrip from json"""
seq = DNA.make_seq("AAAAATATTATTGGGT")
seq.add_feature(biotype="exon", name="myname", spans=[(0, 5)])
got = seq.to_json()
new = deserialise_object(got)
feat = list(new.get_features(biotype="exon"))[0]
assert str(feat.get_slice()) == "AAAAA"
# now with a list span
seq = seq[3:]
got = seq.to_json()
new = deserialise_object(got)
assert new.annotation_offset == 3
feat = list(new.get_features(biotype="exon", allow_partial=True))[0]
assert str(feat.get_slice()) == "AA"
def test_roundtripped_alignment():
"""Alignment with annotations roundtrips correctly"""
# annotations just on member sequences
aln = make_aligned_seqs(
data=[["x", "-AAAAAAAAA"], ["y", "TTTT--TTTT"]], array_align=False
)
db = GffAnnotationDb()
db.add_feature(seqid="x", biotype="exon", name="fred", spans=[(3, 8)])
aln.annotation_db = db
seq_exon = list(aln.get_features(seqid="x", biotype="exon"))[0]
expect = seq_exon.get_slice()
json = aln.to_json()
new = deserialise_object(json)
got_exons = list(new.get_features(seqid="x", biotype="exon"))[0]
assert got_exons.get_slice().to_dict() == expect.to_dict()
# annotations just on alignment
aln = make_aligned_seqs(
data=[["x", "-AAAAAGGGG"], ["y", "TTTT--CCCC"]], array_align=False
)
f = aln.add_feature(biotype="generic", name="no name", spans=[(1, 4), (6, 10)])
expect = f.get_slice().to_dict()
json = aln.to_json()
new = deserialise_object(json)
got = list(new.get_features(biotype="generic"))[0]
assert got.get_slice().to_dict() == expect
# annotations on both alignment and sequence
aln = make_aligned_seqs(
data=[["x", "-AAAAAGGGG"], ["y", "TTTT--CCCC"]], array_align=False
)
db = GffAnnotationDb()
db.add_feature(
seqid=None,
biotype="generic",
name="no name",
spans=[(1, 4), (6, 10)],
on_alignment=True,
)
db.add_feature(seqid="x", biotype="exon", name="1", spans=[(3, 8)])
aln.annotation_db = db
json = aln.to_json()
new = deserialise_object(json)
## get back the exon
seq_exon = list(aln.get_features(seqid="x", biotype="exon"))[0]
expect = seq_exon.get_slice().to_dict()
got_exons = list(new.get_features(seqid="x", biotype="exon"))[0]
assert got_exons.get_slice().to_dict() == expect
## get back the generic
expect = f.get_slice().to_dict()
got = list(new.get_features(biotype="generic"))[0]
assert got.get_slice().to_dict() == expect
# check masking of seq features still works
new = new.with_masked_annotations("exon", mask_char="?")
assert new[4:9].to_dict() == dict(x="?????", y="--CCC")
def test_feature_out_range():
"""features no longer included in an alignment will not be returned"""
aln = make_aligned_seqs(data=[["x", "-AAAA"], ["y", "TTTTT"]], array_align=False)
db = GffAnnotationDb()
db.add_feature(seqid="x", biotype="exon", name="A", spans=[(5, 8)])
f = list(aln.get_features(seqid="x", biotype="exon"))
assert not f
@pytest.mark.parametrize("cast", (list, numpy.array))
def test_search_with_ints(cast):
"""searching for features with numpy ints should work"""
start, stop = cast([2, 5])
seq = DNA.make_seq("AAAGGGGGAACCCT", name="x")
db = GffAnnotationDb()
db.add_feature(seqid="x", biotype="exon", name="E1", spans=[(3, 8)])
db.add_feature(seqid="x", biotype="exon", name="E2", spans=[(10, 13)])
seq.annotation_db = db
feats = list(
seq.get_features(biotype="exon", allow_partial=True, start=start, stop=stop)
)
assert len(feats) == 1
def test_roundtripped_alignment_with_slices():
"""Sliced Alignment with annotations roundtrips correctly"""
# annotations just on member sequences
aln = make_aligned_seqs(
data=[["x", "-AAAGGGGGAACCCT"], ["y", "TTTT--TTTTAGGGA"]], array_align=False
)
db = GffAnnotationDb()
db.add_feature(seqid="x", biotype="exon", name="E1", spans=[(3, 8)])
db.add_feature(seqid="x", biotype="exon", name="E2", spans=[(10, 13)])
aln.annotation_db = db
# at the alignment level
sl = aln.seqs[0][:-3]
assert str(sl) == "-AAAGGGGGAACCCT"[:-3]
sub_aln = aln[:-3]
feats = list(sub_aln.get_features(biotype="exon", allow_partial=True))
assert len(feats) == 2
new = deserialise_object(sub_aln.to_json())
feats = list(new.get_features(biotype="exon", allow_partial=True))
assert len(feats) == 2
gf1, gf2 = feats
assert gf1.get_slice().to_dict() == {"x": "GGGGG", "y": "--TTT"}
assert gf2.get_slice().to_dict() == {"x": "C", "y": "G"}
def test_feature_reverse():
"""reverse complement of features"""
# When dealing with sequences that can be reverse complemented
# (e.g. DnaSequence) features are **not** reversed.
# Features are considered to have strand specific meaning
# (.e.g CDS, exons) and so stay on their original strands.
# We create a sequence with a CDS that spans multiple exons,
# and show that after getting the reverse complement we have
# exactly the same result from getting the CDS annotation.
plus = DNA.make_seq("AAGGGGAAAACCCCCAAAAAAAAAATTTTTTTTTTAAA", name="plus")
plus_cds = plus.add_feature(
biotype="CDS", name="gene", spans=[(2, 6), (10, 15), (25, 35)]
)
assert str(plus_cds.get_slice()) == "GGGGCCCCCTTTTTTTTTT"
minus = plus.rc()
minus_cds = list(minus.get_features(biotype="CDS"))[0]
assert str(minus_cds.get_slice()) == "GGGGCCCCCTTTTTTTTTT"
@pytest.mark.parametrize("moltype", ("protein", "bytes", "text"))
def test_rc_feature_on_wrong_moltype(moltype):
moltype = get_moltype(moltype)
seq = moltype.make_seq("AAGGGGAAAACCCCCAAAAAAAAAATTTTTTTTTTAAA", name="s1")
cds = seq.add_feature(
biotype="CDS", name="gene", spans=[(2, 6), (10, 15), (25, 35)], strand="-"
)
with pytest.raises(TypeError):
cds.get_slice()
def test_feature_equal(ann_seq):
(f1,) = list(ann_seq.get_features(biotype="gene"))
(f2,) = list(ann_seq.get_features(biotype="gene"))
assert f1 is not f2
assert f1 == f2
def test_feature_not_equal(ann_seq):
(f1,) = list(ann_seq.get_features(biotype="gene"))
(f2,) = list(ann_seq.get_features(biotype="exon"))
assert f1 is not f2
assert f1 != f2
# same attributes except parent different parent seq
nseq = ann_seq.copy()
(nf1,) = list(nseq.get_features(biotype="gene"))
assert nf1 != f1
@pytest.mark.parametrize("attr", ("seqid", "biotype", "name", "map"))
def test_feature_not_equal_attr(ann_seq, attr):
(f1,) = list(ann_seq.get_features(biotype="gene"))
attrs = dict(
parent=f1.parent,
seqid=f1.seqid,
biotype=f1.biotype,
map=f1.map,
name=f1.name,
strand="-" if f1.reversed else "+",
)
value = attrs["map"][:4] if attr == "map" else "different"
attrs[attr] = value
f2 = Feature(**attrs)
assert f1 != f2
def test_hash_feature(ann_seq):
(f1,) = list(ann_seq.get_features(biotype="gene"))
(f2,) = list(ann_seq.get_features(biotype="gene"))
got = {f1, f2}
assert len(got) == 1
def test_seq_degap_preserves_annotations():
s1 = DNA.make_seq("AAGAAGAAGACCCCCAAAAAAAAAATTTTTTTTTTAAAAAGGGAACCCT", name="seq1")
s1.add_feature(biotype="exon", name="A", spans=[(10, 15)])
dg = s1.degap()
assert len(s1.annotation_db) == len(dg.annotation_db)
@pytest.mark.parametrize("cls", (SequenceCollection, Alignment))
def test_align_degap_preserves_annotations(cls):
"""get translation works on incomplete codons"""
coll = cls(data={"seq1": "GATN--", "seq2": "?GATCT"}, moltype=DNA)
db = BasicAnnotationDb()
db.add_feature(biotype="exon", name="exon1", spans=[(1, 2)], seqid="seq1")
coll.annotation_db = db
got = coll.degap()
assert got.annotation_db is coll.annotation_db
assert len(got.annotation_db) == 1
|