File: test_scale_rules.py

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (156 lines) | stat: -rw-r--r-- 6,025 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python

import unittest

from cogent3 import make_tree
from cogent3.evolve import substitution_model
from cogent3.evolve.predicate import MotifChange, replacement


def a_c(x, y):
    return (x == "A" and y == "C") or (x == "C" and y == "A")


a_c = MotifChange("A", "C")
trans = MotifChange("A", "G") | MotifChange("T", "C")

TREE = make_tree(tip_names="ab")


class ScaleRuleTests(unittest.TestCase):
    def _makeModel(self, predicates, scale_rules=None):
        scale_rules = scale_rules or []
        return substitution_model.TimeReversibleNucleotide(
            equal_motif_probs=True,
            model_gaps=False,
            predicates=predicates,
            scales=scale_rules,
        )

    def _get_scaled_lengths(self, model, params):
        LF = model.make_likelihood_function(TREE)
        for param in params:
            LF.set_param_rule(param, value=params[param], is_constant=True)
        result = {}
        for predicate in model.scale_masks:
            result[predicate] = LF.get_scaled_lengths(predicate)["a"]
        return result

    def test_scaled(self):
        """Scale rule requiring matrix entries to have all pars specified"""
        model = self._makeModel({"k": trans}, {"ts": trans, "tv": ~trans})

        self.assertEqual(
            self._get_scaled_lengths(model, {"k": 6.0, "length": 4.0}),
            {"ts": 3.0, "tv": 1.0},
        )

    def test_binned(self):
        model = self._makeModel({"k": trans}, {"ts": trans, "tv": ~trans})

        LF = model.make_likelihood_function(TREE, bins=2)
        LF.set_param_rule("length", value=4.0, is_constant=True)
        LF.set_param_rule("k", value=6.0, bin="bin0", is_constant=True)
        LF.set_param_rule("k", value=1.0, bin="bin1", is_constant=True)

        for bin, expected in [("bin0", 3.0), ("bin1", 4.0 / 3), (None, 13.0 / 6)]:
            self.assertEqual(LF.get_scaled_lengths("ts", bin=bin)["a"], expected)

    def test_scaled_or(self):
        """Scale rule where matrix entries can have any of the pars specified"""
        model = self._makeModel(
            {"k": trans, "ac": a_c}, {"or": (trans | a_c), "not": ~(trans | a_c)}
        )

        self.assertEqual(
            self._get_scaled_lengths(model, {"k": 6.0, "length": 6.0, "ac": 3.0}),
            {"or": 5.0, "not": 1.0},
        )

    def test_scaling(self):
        """Testing scaling calculations using Dn and Ds as an example."""
        model = substitution_model.TimeReversibleCodon(
            model_gaps=False,
            recode_gaps=True,
            predicates={"k": trans, "r": replacement},
            motif_probs={
                "TAT": 0.0088813702685557206,
                "TGT": 0.020511736096426307,
                "TCT": 0.024529498836963416,
                "TTT": 0.019454430112074435,
                "TGC": 0.0010573059843518714,
                "TGG": 0.0042292239374074857,
                "TAC": 0.002326073165574117,
                "TTC": 0.0086699090716853451,
                "TCG": 0.0010573059843518714,
                "TTA": 0.020723197293296681,
                "TTG": 0.01036159864664834,
                "TCC": 0.0082469866779445976,
                "TCA": 0.022414886868259674,
                "GCA": 0.015648128568407697,
                "GTA": 0.014590822584055826,
                "GCC": 0.0095157538591668436,
                "GTC": 0.0063438359061112285,
                "GCG": 0.0016916895749629942,
                "GTG": 0.0067667582998519769,
                "CAA": 0.018185662930852189,
                "GTT": 0.021569042080778176,
                "GCT": 0.014167900190315077,
                "ACC": 0.0042292239374074857,
                "GGT": 0.014167900190315077,
                "CGA": 0.0012687671812222456,
                "CGC": 0.0010573059843518714,
                "GAT": 0.030238951152463524,
                "AAG": 0.034891097483611758,
                "CGG": 0.002326073165574117,
                "ACT": 0.028758722774370905,
                "GGG": 0.0071896806935927262,
                "GGA": 0.016282512159018821,
                "GGC": 0.0090928314654260944,
                "GAG": 0.031296257136815393,
                "AAA": 0.05476844998942694,
                "GAC": 0.011207443434129837,
                "CGT": 0.0033833791499259885,
                "GAA": 0.076337492070205112,
                "CTT": 0.010573059843518714,
                "ATG": 0.012687671812222457,
                "ACA": 0.021991964474518927,
                "ACG": 0.00084584478748149711,
                "ATC": 0.0076126030873334746,
                "AAC": 0.022837809262000422,
                "ATA": 0.017762740537111441,
                "AGG": 0.013533516599703954,
                "CCT": 0.025586804821315288,
                "AGC": 0.029393106364982026,
                "AGA": 0.021991964474518927,
                "CAT": 0.021357580883907802,
                "AAT": 0.05772890674561218,
                "ATT": 0.019031507718333687,
                "CTG": 0.012899133009092831,
                "CTA": 0.013744977796574329,
                "CTC": 0.0078240642842038483,
                "CAC": 0.0050750687248889825,
                "CCG": 0.00021146119687037428,
                "AGT": 0.03742863184605625,
                "CAG": 0.024106576443222668,
                "CCA": 0.021357580883907802,
                "CCC": 0.0069782194967223515,
            },
            scales={"dN": replacement, "dS": ~replacement},
            mprob_model="tuple",
        )
        length = 0.1115

        a = self._get_scaled_lengths(
            model, {"k": 3.6491, "r": 0.6317, "length": length}
        )
        b = self._get_scaled_lengths(model, {"k": 3.6491, "r": 1.0, "length": length})
        dN = length * a["dN"] / (3.0 * b["dN"])
        dS = length * a["dS"] / (3.0 * b["dS"])
        # following are results from PAML
        self.assertEqual(f"{dN:.4f}", "0.0325")
        self.assertEqual(f"{dS:.4f}", "0.0514")


if __name__ == "__main__":
    unittest.main()