1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#!/usr/bin/env python
import unittest
from cogent3 import make_tree
from cogent3.evolve import substitution_model
from cogent3.evolve.predicate import MotifChange, replacement
def a_c(x, y):
return (x == "A" and y == "C") or (x == "C" and y == "A")
a_c = MotifChange("A", "C")
trans = MotifChange("A", "G") | MotifChange("T", "C")
TREE = make_tree(tip_names="ab")
class ScaleRuleTests(unittest.TestCase):
def _makeModel(self, predicates, scale_rules=None):
scale_rules = scale_rules or []
return substitution_model.TimeReversibleNucleotide(
equal_motif_probs=True,
model_gaps=False,
predicates=predicates,
scales=scale_rules,
)
def _get_scaled_lengths(self, model, params):
LF = model.make_likelihood_function(TREE)
for param in params:
LF.set_param_rule(param, value=params[param], is_constant=True)
result = {}
for predicate in model.scale_masks:
result[predicate] = LF.get_scaled_lengths(predicate)["a"]
return result
def test_scaled(self):
"""Scale rule requiring matrix entries to have all pars specified"""
model = self._makeModel({"k": trans}, {"ts": trans, "tv": ~trans})
self.assertEqual(
self._get_scaled_lengths(model, {"k": 6.0, "length": 4.0}),
{"ts": 3.0, "tv": 1.0},
)
def test_binned(self):
model = self._makeModel({"k": trans}, {"ts": trans, "tv": ~trans})
LF = model.make_likelihood_function(TREE, bins=2)
LF.set_param_rule("length", value=4.0, is_constant=True)
LF.set_param_rule("k", value=6.0, bin="bin0", is_constant=True)
LF.set_param_rule("k", value=1.0, bin="bin1", is_constant=True)
for bin, expected in [("bin0", 3.0), ("bin1", 4.0 / 3), (None, 13.0 / 6)]:
self.assertEqual(LF.get_scaled_lengths("ts", bin=bin)["a"], expected)
def test_scaled_or(self):
"""Scale rule where matrix entries can have any of the pars specified"""
model = self._makeModel(
{"k": trans, "ac": a_c}, {"or": (trans | a_c), "not": ~(trans | a_c)}
)
self.assertEqual(
self._get_scaled_lengths(model, {"k": 6.0, "length": 6.0, "ac": 3.0}),
{"or": 5.0, "not": 1.0},
)
def test_scaling(self):
"""Testing scaling calculations using Dn and Ds as an example."""
model = substitution_model.TimeReversibleCodon(
model_gaps=False,
recode_gaps=True,
predicates={"k": trans, "r": replacement},
motif_probs={
"TAT": 0.0088813702685557206,
"TGT": 0.020511736096426307,
"TCT": 0.024529498836963416,
"TTT": 0.019454430112074435,
"TGC": 0.0010573059843518714,
"TGG": 0.0042292239374074857,
"TAC": 0.002326073165574117,
"TTC": 0.0086699090716853451,
"TCG": 0.0010573059843518714,
"TTA": 0.020723197293296681,
"TTG": 0.01036159864664834,
"TCC": 0.0082469866779445976,
"TCA": 0.022414886868259674,
"GCA": 0.015648128568407697,
"GTA": 0.014590822584055826,
"GCC": 0.0095157538591668436,
"GTC": 0.0063438359061112285,
"GCG": 0.0016916895749629942,
"GTG": 0.0067667582998519769,
"CAA": 0.018185662930852189,
"GTT": 0.021569042080778176,
"GCT": 0.014167900190315077,
"ACC": 0.0042292239374074857,
"GGT": 0.014167900190315077,
"CGA": 0.0012687671812222456,
"CGC": 0.0010573059843518714,
"GAT": 0.030238951152463524,
"AAG": 0.034891097483611758,
"CGG": 0.002326073165574117,
"ACT": 0.028758722774370905,
"GGG": 0.0071896806935927262,
"GGA": 0.016282512159018821,
"GGC": 0.0090928314654260944,
"GAG": 0.031296257136815393,
"AAA": 0.05476844998942694,
"GAC": 0.011207443434129837,
"CGT": 0.0033833791499259885,
"GAA": 0.076337492070205112,
"CTT": 0.010573059843518714,
"ATG": 0.012687671812222457,
"ACA": 0.021991964474518927,
"ACG": 0.00084584478748149711,
"ATC": 0.0076126030873334746,
"AAC": 0.022837809262000422,
"ATA": 0.017762740537111441,
"AGG": 0.013533516599703954,
"CCT": 0.025586804821315288,
"AGC": 0.029393106364982026,
"AGA": 0.021991964474518927,
"CAT": 0.021357580883907802,
"AAT": 0.05772890674561218,
"ATT": 0.019031507718333687,
"CTG": 0.012899133009092831,
"CTA": 0.013744977796574329,
"CTC": 0.0078240642842038483,
"CAC": 0.0050750687248889825,
"CCG": 0.00021146119687037428,
"AGT": 0.03742863184605625,
"CAG": 0.024106576443222668,
"CCA": 0.021357580883907802,
"CCC": 0.0069782194967223515,
},
scales={"dN": replacement, "dS": ~replacement},
mprob_model="tuple",
)
length = 0.1115
a = self._get_scaled_lengths(
model, {"k": 3.6491, "r": 0.6317, "length": length}
)
b = self._get_scaled_lengths(model, {"k": 3.6491, "r": 1.0, "length": length})
dN = length * a["dN"] / (3.0 * b["dN"])
dS = length * a["dS"] / (3.0 * b["dS"])
# following are results from PAML
self.assertEqual(f"{dN:.4f}", "0.0325")
self.assertEqual(f"{dS:.4f}", "0.0514")
if __name__ == "__main__":
unittest.main()
|