1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
#!/usr/bin/env python
"""testing the alignment simulation code. We will first just create a simple
Jukes Cantor model using a four taxon tree with very different branch lengths,
and a Kimura two (really one) parameter model.
The test is to reestimate the parameter values as accurately as possible."""
from cogent3 import make_tree
from cogent3.evolve import substitution_model
def _est_simulations():
# specify the 4 taxon tree, and a 'dummy' alignment
t = make_tree(treestring="(a:0.4,b:0.3,(c:0.15,d:0.2)edge.0:0.1)root;")
# how long the simulated alignments should be
# at 1000000 the estimates get nice and close
length_of_align = 10000
#########################
#
# For a Jukes Cantor model
#
#########################
sm = substitution_model.TimeReversibleNucleotide()
lf = sm.make_likelihood_function(t)
lf.set_constant_lengths()
lf.set_name("True JC model")
print(lf)
simulated = lf.simulate_alignment(sequence_length=length_of_align)
print(simulated)
new_lf = sm.make_likelihood_function(t)
new_lf = new_lf.set_alignment(simulated)
new_lf.optimise(tolerance=1.0, show_progress=False)
new_lf.optimise(local=True, show_progress=False)
new_lf.set_name("True JC model")
print(new_lf)
#########################
#
# a Kimura model
#
#########################
# has a ts/tv term, different values for every edge
sm = substitution_model.TimeReversibleNucleotide(predicates={"kappa": "transition"})
lf = sm.make_likelihood_function(t)
lf.set_constant_lengths()
lf.set_param_rule("kappa", is_constant=True, value=4.0, edge_name="a")
lf.set_param_rule("kappa", is_constant=True, value=0.5, edge_name="b")
lf.set_param_rule("kappa", is_constant=True, value=0.2, edge_name="c")
lf.set_param_rule("kappa", is_constant=True, value=3.0, edge_name="d")
lf.set_param_rule("kappa", is_constant=True, value=2.0, edge_name="edge.0")
lf.set_name("True Kappa model")
print(lf)
simulated = lf.simulate_alignment(sequence_length=length_of_align)
print(simulated)
new_lf = sm.make_likelihood_function(t)
new_lf.set_param_rule("kappa", is_independent=True)
new_lf.set_alignment(simulated)
new_lf.optimise(tolerance=1.0, show_progress=False)
new_lf.optimise(local=True, show_progress=False)
new_lf.set_name("Estimated Kappa model")
print(new_lf)
|