File: test_measure.py

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (286 lines) | stat: -rw-r--r-- 9,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from unittest import TestCase

from numpy import diag_indices, dot, finfo, float64
from numpy.random import random
from numpy.testing import assert_allclose

from cogent3.maths.matrix_exponentiation import PadeExponentiator
from cogent3.maths.matrix_logarithm import logm
from cogent3.maths.measure import (
    jsd,
    jsm,
    paralinear_continuous_time,
    paralinear_discrete_time,
)


def gen_q_p():
    q1 = random((4, 4))
    indices = diag_indices(4)
    q1[indices] = 0
    q1[indices] = -q1.sum(axis=1)
    p1 = PadeExponentiator(q1)()
    return q1, p1


def gen_qs_ps():
    q1, p1 = gen_q_p()
    q2, p2 = gen_q_p()
    p3 = dot(p1, p2)
    q3 = logm(p3)
    return (q1, p1), (q2, p2), (q3, p3)


def next_pi(pi, p):
    return dot(pi, p)


class ParalinearTest(TestCase):
    def test_paralinear_discrete_time(self):
        """tests paralinear_discrete_time to compare it with the output of paralinear_continuous_time"""
        qp1, qp2, qp3 = gen_qs_ps()
        pi1 = random(4)
        pi1 /= pi1.sum()
        pi2 = next_pi(pi1, qp1[1])
        pi3 = next_pi(pi2, qp2[1])

        con_time_pl1 = paralinear_continuous_time(qp1[1], pi1, qp1[0])
        dis_time_pl1 = paralinear_discrete_time(qp1[1], pi1)
        assert_allclose(con_time_pl1, dis_time_pl1)

        con_time_pl2 = paralinear_continuous_time(qp2[1], pi2, qp2[0])
        dis_time_pl2 = paralinear_discrete_time(qp2[1], pi2)
        assert_allclose(con_time_pl2, dis_time_pl2)

        con_time_pl3 = paralinear_continuous_time(qp3[1], pi3, qp3[0])
        dis_time_pl3 = paralinear_discrete_time(qp3[1], pi3)
        assert_allclose(con_time_pl3, dis_time_pl3)

    def test_paralinear_continuous_time(self):
        """paralinear_continuous_time is additive from random matrices"""
        qp1, qp2, qp3 = gen_qs_ps()
        pi1 = random(4)
        pi1 /= pi1.sum()
        pi2 = next_pi(pi1, qp1[1])

        pl1 = paralinear_continuous_time(qp1[1], pi1, qp1[0])
        pl2 = paralinear_continuous_time(qp2[1], pi2, qp2[0])
        pl3 = paralinear_continuous_time(qp3[1], pi1, qp3[0])

        assert_allclose(pl1 + pl2, pl3)

    def test_paralinear_continuous_time_validate(self):
        """paralinear_continuous_time validate check consistency"""
        qp1, qp2, qp3 = gen_qs_ps()
        pi1 = random(4)

        with self.assertRaises(AssertionError):
            paralinear_continuous_time(
                qp1[1], qp1[0], qp1[0], validate=True
            )  # pi invalid shape

        with self.assertRaises(AssertionError):
            paralinear_continuous_time(
                qp1[1], pi1, qp1[0], validate=True
            )  # pi invalid values

        pi1 /= pi1.sum()
        with self.assertRaises(AssertionError):
            paralinear_continuous_time(qp1[1], pi1, qp1[1], validate=True)  # invalid Q

        with self.assertRaises(AssertionError):
            paralinear_continuous_time(qp1[0], pi1, qp1[0], validate=True)  # invalid P

        qp2[0][0, 0] = 9
        with self.assertRaises(AssertionError):
            paralinear_continuous_time(qp1[1], pi1, qp2[0], validate=True)  # invalid Q

        qp2[1][0, 3] = 9
        with self.assertRaises(AssertionError):
            paralinear_continuous_time(qp2[1], pi1, qp1[0], validate=True)  # invalid P


class TestJensenShannon(TestCase):
    # the following value is 4x machine precision, used to handle
    # architectures that have lower precision and do not produce 0.0 from
    # numerical calcs involved in jsd/jsm
    atol = 4 * finfo(float64).eps

    def test_jsd_validation(self):
        """jsd fails with malformed data"""
        freqs1 = random(5)
        normalised_freqs1 = freqs1 / freqs1.sum()
        two_dimensional_freqs1 = [freqs1, freqs1]
        shorter_freqs1 = freqs1[:4]

        freqs2 = random(5)
        normalised_freqs2 = freqs2 / freqs2.sum()
        two_dimensional_freqs2 = [freqs2, freqs2]
        shorter_freqs2 = freqs2[:4]

        with self.assertRaises(AssertionError):
            jsd(
                freqs1, two_dimensional_freqs2, validate=True
            )  # freqs1/freqs2 mismatched shape

        with self.assertRaises(AssertionError):
            jsd(
                two_dimensional_freqs1, freqs2, validate=True
            )  # freqs1/freqs2 mismatched shape

        with self.assertRaises(AssertionError):
            jsd(freqs1, shorter_freqs2, validate=True)  # freqs1/freqs2 mismatched shape

        with self.assertRaises(AssertionError):
            jsd(shorter_freqs1, freqs2, validate=True)  # freqs1/freqs2 mismatched shape

        with self.assertRaises(AssertionError):
            jsd(
                two_dimensional_freqs1, freqs2, validate=True
            )  # freqs1 has incorrect dimension

        with self.assertRaises(AssertionError):
            jsd(
                two_dimensional_freqs1, two_dimensional_freqs2, validate=True
            )  # freqs1 has incorrect dimension

        with self.assertRaises(AssertionError):
            jsd(
                freqs1, two_dimensional_freqs2, validate=True
            )  # freqs2 has incorrect dimension

        with self.assertRaises(AssertionError):
            jsd(freqs1, freqs2, validate=True)  # invalid freqs1

        with self.assertRaises(AssertionError):
            jsd(freqs1, normalised_freqs2, validate=True)  # invalid freqs1

        with self.assertRaises(AssertionError):
            jsd(normalised_freqs1, freqs2, validate=True)  # invalid freqs2

    def test_jsd(self):
        """evaluate jsd between identical, and non-identical distributions"""
        # case1 is testing if the jsd between two identical distributions is 0.0
        case1 = [
            [0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0],
        ]
        for index in range(len(case1[0])):
            case1[0][index] = 1.0
            case1[1][index] = 1.0
            assert_allclose(
                jsd(case1[0], case1[1], validate=True),
                0.0,
                err_msg="Testing case1 for jsd failed",
                atol=self.atol,
            )
            case1[0][index] = 0.0
            case1[1][index] = 0.0
        # case2 is testing the numerical output of jsd between two distant distributions
        case2 = [[1 / 10, 9 / 10, 0], [0, 1 / 10, 9 / 10]]
        assert_allclose(
            jsd(case2[0], case2[1], validate=True),
            0.7655022032053593,
            err_msg="Testing case2 for jsd failed",
            atol=self.atol,
        )
        # case3 is testing the numerical output of jsd between two distant distributions
        case3 = [[1.0, 0.0], [1 / 2, 1 / 2]]
        assert_allclose(
            jsd(case3[0], case3[1], validate=True),
            0.3112781244591328,
            err_msg="Testing case3 for jsd failed",
            atol=self.atol,
        )
        # case4 - the jsd between two identical uniform distributions is 0.0
        case4 = [
            [1 / 10] * 10,
            [1 / 10] * 10,
        ]
        assert_allclose(
            jsd(case4[0], case4[1], validate=True),
            0.0,
            err_msg="Testing case4 for jsd failed",
            atol=self.atol,
        )

        assert_allclose(
            jsd(case4[0], case4[0], validate=True),
            0.0,
            err_msg="Testing case4 for jsd failed",
            atol=self.atol,
        )

    def test_jsd_precision(self):
        """handle case where the difference is incredibly small"""
        pi_0 = [
            0.4398948756903677,
            0.1623791467423164,
            0.31844113569205656,
            0.07928484187525932,
        ]
        pi_1 = [
            0.43989487569036767,
            0.16237914674231643,
            0.3184411356920566,
            0.07928484187525933,
        ]
        result = jsd(pi_0, pi_1)
        self.assertTrue(result >= 0)

    def test_general_jsd(self):
        """check correctness of JSD for > 2 distributions"""
        freqs = (0.1, 0.2, 0.3, 0.4), (0.4, 0.3, 0.2, 0.1), (0.1, 0.4, 0.2, 0.3)
        got = jsd(*freqs, validate=True)
        # expected value from the R-package philentropy gJSD implementation
        assert_allclose(got, 0.1374318, atol=1e-7)

        # with invalid freqs
        freqs = (0.1, 0.2, 0.3, 0.4), (0.4, 0.3, 0.1, 0.2), (0.1, 0.4, 0.4, 0.3)
        with self.assertRaises(AssertionError):
            jsd(*freqs, validate=True)

    def test_jsm(self):
        """evaluate jsm between identical, and non-identical distributions"""
        case1 = [
            [0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0],
        ]
        for index in range(len(case1[0])):
            case1[0][index] = 1.0
            case1[1][index] = 1.0
            assert_allclose(
                jsm(case1[0], case1[1], validate=True),
                0.0,
                err_msg="Testing case1 for jsm failed",
                atol=self.atol,
            )
            case1[0][index] = 0.0
            case1[1][index] = 0.0
        # case2 is testing the numerical output of jsm between two random distributions
        case2 = [[1 / 10, 9 / 10, 0], [0, 1 / 10, 9 / 10]]
        assert_allclose(
            jsm(case2[0], case2[1], validate=True),
            0.8749298275892526,
            err_msg="Testing case2 for jsm failed",
            atol=self.atol,
        )
        # case3 is testing the numerical output of jsm between two random distributions
        case3 = [[1.0, 0.0], [1 / 2, 1 / 2]]
        assert_allclose(
            jsm(case3[0], case3[1], validate=True),
            0.5579230452841438,
            err_msg="Testing case3 for jsm failed",
            atol=self.atol,
        )
        # case4 is testing if the jsm between two identical uniform distributions is 0.0
        case4 = [
            [1 / 10] * 10,
            [1 / 10] * 10,
        ]
        assert_allclose(
            jsm(case4[0], case4[1], validate=True),
            0.0,
            err_msg="Testing case4 for jsm failed",
            atol=self.atol,
        )